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Abstract 

 

During solidification, solute-induced convective instabilities at the 

solid - liquid interface can result in the formation of defects such 

as freckles and misoriented grains in superalloy single crystals.  

These defects can be particularly detrimental to the properties of 

single crystal nickel-base superalloys.  Unfortunately, detailed 

understanding of fluid flow at the scale of the dendritic structure 

has yet to be fully understood, particularly under conditions in 

which heat extraction is non-axial.  The objective of this research 

is to develop a technique for quantifying the dendritic structure 

and morphology at the solid – liquid interface for the purpose of 

providing direct input into computational fluid flow modeling.  

Using the RoboMET.3D serial sectioning system, three-

dimensional datasets of dendritic structure at the solidification 

front have been obtained for René N4 abruptly decanted during 

solidification.  Distribution and arrangement of solid and liquid in 

the vicinity of dendrite tips is analyzed and the implications for 

defect formation are discussed.  

 

Introduction 

 

Preventing the formation of freckles and/or misoriented grains is 

important to the manufacturing and performance of single crystal 

superalloy components.  These defects are the result of solute-

induced convective instabilities that occur at the solid-liquid 

interface during directional solidification [1-4].  The two most 

common defects observed are isolated, individual high-angle mis-

oriented grains and freckle-chains. Although a number of factors 

have been identified as contributors to the formation of these 

defects, including; cooling rates, refractory alloy content and 

casting size and geometry [3-7], convective flow during 

solidification is regarded as the precursor event [8-12].  As a 

result, the most widely used criteria for the prediction of these 

defects generally consider the ratio of the buoyant to frictional 

forces, an interaction chiefly quantified by the Rayleigh number 

[10, 13-17].  Such a prediction requires not only knowledge of the 

fluid-flow conditions in the melt but also a detailed understanding 

of the geometrical domain in which the melt flows. Unfortunately, 

a definitive understanding of fluid flow at the scale of 

directionally solidified dendritic structures is still lacking.  This is 

partly due to the many factors governing flow at this level that are 

both dynamic and difficult to quantify.  These factors, captured in 

the Rayleigh parameter Ra, Eq. (1), include composition, 

segregation behavior, permeability, and flow channel geometry:  
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where !!/!0 is the density gradient in the liquid, g is acceleration 

due to gravity, K is permeability, L is the height of the mushy 

zone or relative length scale and "# is the product of thermal 

diffusivity and kinematic viscosity [15].  Alloy chemistry 

influences the Rayleigh number by means of its inherent effect on 

the density gradient, diffusivity and viscosity. Permeability 

however, is dependent upon the dendritic environment through 

which fluid flow occurs.  This research focuses on the 

development of three-dimensional reconstruction and 

characterization techniques for dendritic structures that can be 

used to more accurately quantify the fluid flow environment and 

consequently provide a more precise approximation of 

permeability within the dendritic array.  

 

Experimental Procedures 

 

Using an ALD Vacuum Technologies, Inc. Furnace (see Fig. 1), 4 

kg ingots were directionally solidified in conventional Bridgman 

mode at the University of Michigan.  The alloy used in this study 

is the commercial superalloy René N4 with a nominal 

composition of 4.2Al-0.05C-7.5Co-9.8Cr-0.15Hf-1.5Mo-0.5Nb-

4.8Ta-3.5Ti-6.0W-Ni (wt%) and solidus and liquidus 

temperatures of 1300
o
C and 1345

o
C respectively.  A withdrawal 

rate of 2.5 mm/min and thermal gradient of 40
o
C/cm was used.  

During withdrawal, the investment mold was fractured to 

evacuate molten liquid from the solidified dendritic structure 

while leaving the solid structure at the solidification front 

undisturbed. 

 

Following solidification, a cast elongated plate with a cross-

sectional area normal to the growth direction of 11.5 x 3 cm was 

produced and samples of approximately 1cm x 1cm x 1cm were 

removed from the solid-liquid interface of the casting with slow 

speed milling saws while exercising care to leave the dendritic 

front undisturbed.  Samples were then vacuum impregnated with 

Buehler EpoHeat epoxy.  Next, using the prototype RoboMET.3D 

serial sectioning system at Wright-Patterson Air Force Base, (see 

Fig. 2) mechanical polishing, cleaning and imaging at intervals of 

2.2 µm through the sample thickness permitted acquisition of a 3-

D dataset.  Images were taken parallel to the primary growth 

direction consisting of an 8-image montage.  Each image was 

taken at 10X with a standard resolution of 0.52 µm/pixel.  Full 

details of the RoboMET.3D system have been previously 

discussed in the literature [18-20]. 

 

After a comprehensive data set was obtained, image segmentation 

was performed using ITT Visual Information Solutions’ 

Interactive Data Language (IDL) along with Adobe Photoshop to 

render each slice a cleaned, binary image properly aligned for 

stacking.  Using IDL, datasets were converted to three-
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dimensional arrays, for visualization and evaluation of the 

dendritic structure at the solidification front. 

 
Figure 1: ALD Vacuum Technologies, Inc. Bridgman directional 

solidification furnace with liquid metal cooling (LMC) capability. 

 

 
 

Figure 2: RoboMET.3D automated serial sectioning system with 

ALLIED metallographic polisher, robotic arm, ultrasonic cleaner 

and Axiovert Zeiss Inverter Microscope. 

 

Lastly, the three-dimensional arrays were cropped for regions of 

liquid connectivity and surface meshes were generated using 

MIMICS software by Materialise followed by volume meshes that 

were created in GAMBIT by ANSYS. After satisfactory meshing 

of the interdendritic liquid was accomplished, global smoothing of 

the structures was introduced to diminish the pronounced tertiary 

dendritic features and limit flow interaction to the primary and 

secondary dendrite arms to ensure convergence.  FLUENT was 

used to simulate fluid flow through the dendritic structure in the 

following manner.  A direction of flow is assumed and a pressure 

gradient is imposed on the structure.  Boundary conditions of zero 

pressure at the outlet and a flow velocity of 100µm/sec at the inlet 

with ‘no-slip’ at the walls was assumed, and interdendritic fluid 

flow was assumed as steady state.  Using Darcy’s Law, Eq. (2), 

permeability in these structures can be calculated as a result of the 

pressure change.  Q is volumetric flow rate, K represents 

permeability whereas A accounts for cross-sectional area and L is 

the length over which fluid travels between the pressure 

difference. Values for viscosity (µ) and density (!) of the molten 

fluid during simulation have been approximated from calculations 

and predictions in the literature [21, 22]. 
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Results 

 

Reconstruction 

 

The reconstruction is composed of 727 individual slices 

comprising a total of 12.6 GB of image information in its raw 

form.  The removal rate for serial sectioning is shown in Figure 3, 

where the nominal sectioning thickness is shown as 2.2 µm per 

slice.   

 
 

Figure 3: Serial-Sectioning Recession Rate with RoboMET.3D 

showing material removal as a function of slice quantity for the 

René N4 sample. 

 

The total reconstructed volume is 2300 x 2300 x 1600 µm and is 

shown in Figure 4. Figures 5 and 6 are transverse and longitudinal 

slices through the dataset respectively, revealing the dendritic 

patterns present.  Approximations of dendrite arm spacing were 

performed with the digital volume using two separate methods.  

For primary dendrite arm spacing (PDAS), binary images of 

individual planes perpendicular to the growth direction of the 

structure were isolated and primary dendrite cores were counted 

yielding PDAS measurements according to the following relation: 
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where np represents the number of primary cores counted per 

cross-sectional area [23].  Using this method on a series of 

sections taken from this reconstruction, as shown in Fig. 5, an 

average PDAS of 480 µm was estimated.  Similarly, with regard 

to secondary dendrite arm spacing (SDAS) thin binary planes of 

the reconstruction parallel to the primary growth direction, as 

shown in Fig. 6, were isolated and an average SDAS measurement 

of 86 µm was returned.   
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Figure 4 – Reconstructed dendritic solid-liquid interface of René N4, gray represents solidified superalloy, the voids represent 

interdendritic voids occupied by liquid prior to decanting. 

 

 

 
 

Figure 5 – Transverse cross-section of dendritic structures in 

which slice orientation shown is perpendicular to the primary 

growth direction 

 

 
 

Figure 6 – Longitudinal cross-section of dendritic structures in 

which slice orientation shown is parallel to the primary growth 

direction 
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Fraction Solid 

 

By visualizing the structure as a collection of binary images, each 

pixel location represents either solid material or a void region 

formerly occupied by liquid.  In this way, by summing the pixel 

quantities representing the presence and absence of material 

within successive planes along its height, the volume fraction 

solid (fs) as a function of height can be measured, Figure 7.  Initial 

inspection reveals an initially moderate decrease in solid fraction 

followed by a rather precipitous drop in solid fraction wherein 

approximately eighty percent of the volume solid decreases to 

zero in the upper 500 µm of the mushy zone.  This indicates a 

curved liquidus surface where the fraction of solid as a function of 

temperature varies non-linearly.  There are also smaller volume 

fluctuations between fractions solid of  0.5 < fs < 0.9.  These 

however, are due to locally fluctuating solid fraction caused by 

the presence of secondary dendrite arms. 
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Figure 7: Volume fraction solid as a function of height in René N4 

reconstructed mushy zone. 

 

 

Interdendritic Channel Connectivity 

 

For convective instabilities to develop, fluid flow through the 

dendritic structure must occur, making the connectivity of 

interdendritic channels therefore important.  The channels 

produced by the collection of interdendritic voids throughout the 

mushy zone possess a high degree of connectivity, yet these 

channels do not unify all voids.  By distinguishing each 

independent body of interdendritic void in the reconstruction, over 

800 individual regions were identified.  Importantly, 97.9% of the 

total voided regions are composed of a single interconnected 

channel.  Table I summarizes the number of voids and the sum of 

their physical sizes for a given voxel (“volume-pixel”) range. It is 

interesting to note that the cumulative void percentage obtained 

by excluding the largest eighteen independent bodies is 0.63%.  

The largest eighteen bodies detail the location in which molten 

liquid is the single or overwhelming dominant phase.  The 

collection of remaining bodies detail encased voiding which is 

consistent with the level of isolated porosity, typically 

encountered in single crystal materials.  

 

 

Three-Dimensional Calculation of Cross Flow 

 

For convective instabilities to develop in a dendritic structure, 

flow across the dendritic array normal to the solidification 

direction must feed the plumes that flow parallel to the 

solidification direction and ultimately result in freckles.  Thus the 

influence of dendritic structure on this “cross-flow” normal to the 

solidification direction is of interest. A cross-sectional volume 

nominally 200 x 1000 x 1500 µm was selected due to its location 

at the dendrite tips as well its high connectivity of interdendritic 

regions.  Surface and volume meshes of interdendritic liquid 

generated are shown below in Figures 8 and 9 respectively. 

(a) 

 
(b) 

 

Figure 8: (a) Side view, parallel to the solidification direction and 

(b) Top view, normal to the solidification direction of liquid 

surface mesh generated with MIMICS 

 

 
 

(a) 

 

 
 

(b) 
 

Figure 9: (a) Side view, parallel to the solidification direction and 

(b) Bottom view, normal to the solidification direction of liquid 

volume mesh generated with GAMBIT  
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Table I.  Interdendritic Voids: Range, Magnitudes & Overall Contribution 

Volume Threshold (µm3) Voxel Threshold No. of Independent Bodies Cumulative Volume Percentage Void 

Fraction 

Contribution to Total 

Voided Regions 

380 700 000 107 1 1605996489 97.9% 97.91% 

38070000 106 0 0 0.00% 97.91% 

3807000 105 1 4960443 0.30% 98.21% 

380700 104 16 18838565 1.15% 99.36% 

38070 103 68 8238469 0.50% 99.86% 

3807 102 139 1809311 0.11% 99.97% 

380.7 101 273 338958 0.02% 99.99% 

38.07 1 337 50027 0.00% 99.99% 

*single voxel volume is 38.07µm3     

     

     

Streamlines illustrating the flow directions in this volumetric 

cross-section are shown, Figure 10.  Here, flow is depicted from 

left to right and the view presented is the orientation of the 

microstructure as shown in Figure 8b.  In these simulations, flow 

is assumed as steady state and grayscale illustrates flow velocities 

throughout the mushy zone. It can be observed that flow velocity 

increases in narrow channels where flow is constricted and the 

flow rate must increase.  Flow also seems to be dominated by the 

primary and secondary dendrite arms found in the central portions 

of the region.  The pertinent range of velocity magnitudes 

observed range from 175 µm/s to 3500 µm/s. These values appear 

reasonable given the imposed inlet velocity of 100 µm/s.  

  

 
 

Figure 10: Streamlines of cross flow through a volumetric cross-

section of the mushy zone. Solidification direction is normal to 

the view.  Velocity magnitudes are presented in m/s. 

 

Additionally, pressure contours throughout the structure are 

shown in Figure 11.  Higher pressures are concentrated on the left 

at the velocity inlet while low pressures are present at the pressure 

outlet on the right.  Pressure gradients are most pronounced in 

regions of restricted cross-section and high velocity flow. With 

the imposed flow and disregarding any localized fluxes at the 

boundary plates, a pressure differential of 14.5 Pa was measured 

across the structure.  By measuring the local cross-section at the 

inlet a specific cross-sectional area and volumetric flow rate were 

returned.  These values were then used in a formulation of 

Darcy’s Law, Eq. (2), to derive a solution for permeability.  Using 

this method, permeability calculated for cross-flow in this volume 

is 1.16 x 10
-10

 m
2
  

 

 
 

Figure 11: Pressure contours across the reconstructed liquid as a 

result of cross-flow.  An inlet pressure of 17 Pa is present at the 

inlet. 

 

Discussion 

 

Primary and Secondary Dendrites 

 

Dendrite arm spacing has often been used to not only quantify the 

solidification phenomena but also as an indication of casting 

quality in directionally solidified structures.  The predominant 

measures are the primary and secondary dendrite arm spacings 

(PDAS and SDAS respectively) [24-32].  It has been well 

documented that fundamental relationships exist between dendrite 

arm spacing and casting parameters of growth rate (V) and 

thermal gradient (G).  As such, with knowledge of G and V, an 

expected morphology and dendritic spacing can be approximated.  

While variations in the general form of the relationship exist [33, 

34], Hunt proposed the following widely accepted relationship for 

primary dendrite arm spacing ("1) as a function of G and V [35]. 

 

! 

"
1
# G

$ 1
2 * V

$ 1
4   (4) 

 

While PDAS can be influenced largely by the solidification front 

curvature and degree of lateral heat extraction, SDAS has been 

shown to vary fairly consistently with local solidification time 

according to the following behavior [36, 37]: 
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Figures 12 and 13 show the dependence of PDAS and SDAS as a 

function of G and V, Eqs. (4) and (5), measured by Elliott et al. 

[5] using molds instrumented with thermocouples for verification 

of experimental thermal gradient.  The data were generated using 

a set of similar withdrawal rate experiments performed in the 

University of Michigan’s Bridgman furnace with and without 

liquid-Sn assisted cooling [38]. The largest deviations from Eq. 

(4) occur when there is large-scale transverse dendritic growth.   

The extent of transverse dendritic growth in the present 

experiments was extremely limited. 

 

 
Figure 12: Measured Primary Dendrite Arm spacing plotted as a 

function of the product of G
-.5 

* V
-.25

 

 

 
Figure 13: Measured Secondary Dendrite Arm spacing plotted as 

a function of the product of (G*V)
-.33

 

 

Using the results in Figs. 12 and 13, local 3-D and further global 

2-D PDAS and SDAS measurements were evaluated for 

comparison.  Based on the relationships shown in Eqs. (4) and (5) 

and taking into account the thermal gradient (G), and 

solidification front velocity (V), used to produce this casting of 

René N4, we would expect PDAS in the range of 450 – 600 !m 

and an SDAS in the range of 60 – 80 µm as highlighted in Figs 12 

and 13.  Using 2-D metallography on material taken near the 

vicinity of the reconstruction, the average PDAS was measured as 

560 !m whereas SDAS expressed an average measure of 82 µm.  

Similarly, by using planar sections of the reconstruction, with a 

smaller overall cross-section compared to the 2-D measurements, 

the PDAS was approximated as 480 !m and SDAS was 

approximated at 86 !m, which is near the range expected.  Table 

II summarizes these results. 

 

Table II. Comparison of Arm Spacing Measures by Technique 

 PDAS SDAS 

G & V Calculation  450 - 600 60 - 80 

2 – D Measurement 560 82 

3 – D Measurement 480 86 

 

While the 2-D measures compare well with the 3-D measures, the 

3-D approximations for PDAS appear to slightly underestimate 

the 2-D measures due to a smaller cross-section sampled.  Using 

2-D measures, 1,460 dendrite cores were counted for PDAS 

whereas for SDAS, a portion of these cores were sectioned and 31 

independent measures were taken.  Given the limitation of the 

reconstruction, 255 dendrite cores were counted from within 

planes of the reconstruction to get the 3-D PDAS approximation 

whereas 6 representative SDAS measurements were taken by 

sampling through the volume. 

 

Implications of Volume Fraction Gradient and Voiding 

 

With a constant temperature gradient and uniform withdrawal 

rate, a resultant linear variation in fraction solid as a function of 

distance from the dendrite tips into the solid was not observed for 

René N4.  While the literature has suggested steep declines in the 

volume fraction solid over the length of the mushy zone, [33, 39] 

here we have developed an experimental technique to directly 

measure this critical feature of the mushy zone. Taking the 

measured volume fraction solid as a function of height in the 

mushy zone, see Figure 7, over the first 1700 µm a decrease of 

approximately 0.01% fraction solid per µm is apparent while over 

the final 500 µm a decrease of 0.16% fraction solid per µm exists.  

These large-scale gradients in fraction solid will strongly 

influence fluid flow within the mushy zone.  Permeability is 

highly sensitive to volume fraction, and as such, drastic changes 

in volume would suggest drastic fluctuations in permeability over 

the same length scale.  Unfortunately, most solidification analyses 

tend to take an average volume fraction over the mush or consider 

shorter heights throughout the mushy zone to be reasonably free 

from large-scale volume fluctuations and associated large-scale 

fluctuations in permeability [13, 15].  In the 3-D dataset 

presented, over 95% of the total voids identified are united with 

the uppermost body, satisfying a necessary condition for 

convective flow and solidified material transport.  However, this 

arrangement does not necessarily establish a sufficient condition 

for convective flow as the limiting flow step for such an event has 

been proposed as cross-flow parallel to the growth direction of the 

secondary dendrites [40, 41].  While further investigation of mean 

path diameter, length and volume of these channels is in progress, 

initial observation of the largest single body connected to the 

region of superheated liquid reveals an interesting feature.  The 

mushy zone, as illustrated in Figure 4, extends over a height of 

roughly 1875 µm.  The height of the largest interconnected body 

is approximately 900 µm.  This would suggest that the potential 

for convective flow exists as far as halfway down into the mushy 

zone.  
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 Permeability 

 

The above Navier-Stokes fluid flow simulation suggests we can 

successfully calculate permeability in these structures based upon 

the pressure differential. It should be noted that the reconstructed 

liquid used in the fluid flow model shown in this work does 

exhibit a high volume fraction liquid (fL) gradient over its 200 µm 

height (roughly 0.4 < fL < 0.7).  As such, the region of higher 

volume fraction likely dominates the flow calculations derived 

here.  Nonetheless a degree of agreement exists between similar 

treatments of cross-flow permeability in the literature. Bhat et. al 

derived a dimensionless value for permeability in cross-flow 

through dendritic structures [42] as a function of  liquid fraction 

denoted by gL.  This was accomplished by dividing permeability 

by the square of the PDAS.  By employing this convention, we 

arrive at a value for dimensionless permeability in this structure 

K´ = K/"1
2
 equal to 3.68x10

-4
.  While this value is near the range 

of those reported by Bhat and Porier [42, 43], their treatments 

suggest dimensionless permeability values in the range of 10
-2

 – 

10
-3

 for liquid volume fractions in the range of 0.4 to 0.7.  

However, it should also be noted, their treatments report findings 

primarily in the Pb-Sn system with remarkably lower PDAS.  The 

techniques for permeability analysis presented here will now 

permit future assessments of the influence of dendritic 

microstructure on fluid flow and defect formation. 

  

Conclusions 

 

• The primary and secondary dendritic arm spacings of the 

reconstruction are consistent with two-dimensional measures 

and are within the range of expected values based upon 

withdrawal rates and thermal gradients.   

 

• For the commercial alloy René N4, volume fraction solid as 

a function of height does not vary linearly with the 

temperature gradient as might be expected.  This strongly 

affects the permeability as a function of depth throughout the 

mushy zone and particularly in the upper 25%.   

 

• At the solid-liquid solidification front, as observed in the 3-D 

reconstruction, the connectivity of the uppermost body of 

interdendritic liquid during solidification contains over 

ninety percent of the total interdendritic liquid and extends 

down through nearly half of the entire mushy zone height. 

 

• Permeability within these structures can be calculated based 

upon the observed pressure differential resulting from fluid 

flow. The associated permeability values calculated offer 

reasonable agreement with similar treatments of permeability 

in the literature. 
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