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Abstract

Advanced u ltra -supe rc ritica l (A -U S C ) pow er plants operate at steam temperatures o f  700°C  and 
above are the developm ent trend o f  clean coal pow er generation technology. Haynes® 282® has 
gained great attention as one o f  candidate m ateria ls fo r  A -U S C  pow er units. In  th is  paper the 
ox ida tion  behavio r o f  Haynes® 282® in  steam at 750°C  fo r  up to  2000h was investigated. The 
ox ida tion  k ine tics  was obtained and the m icrostructure , cons titu tion  and elem ent d is tr ib u tio n  o f  
the ox ide  scales and the subsurface zones was studied. The results ind ica ted tha t the oxide  scale 
o f  Haynes® 282® in  steam was composed o f  a continuous external laye r and an in te rna l subscale.
The external scale was essentia lly composed o f  C r2O 3 and T iO 2 bu t the in te rna l ox ide  was 
m a in ly  A l2O 3. T iO 2 grains g rew  up and w ere connected w ith  each other du ring  the ox ida tion , and 
the frac tiona l vo lum e  o f  T iO 2 increased obv ious ly  w ith  o x ida tion  tim e. T i was enriched both  at 
the gas/solid and oxide /m eta l interfaces. T iO 2 is be lieved to  be ha rm fu l to  the ox ida tion  
resistance o f  Haynes® 282® in  steam due to  its  p rom o tion  o f  the adsorption and decom position  o f  
H 2O as w e ll as the h igher d iffu s io n  rate o f  H  in  it.

Introduction

The environm enta l res tric tions on the foss il pow er generation plants requ ire  fu rth e r increased 
steam tem perature and pressure. 700°C  advanced u ltra -supe rcritica l (A -U S C ) pow er generation 
techno logy is the d irec tion  o f  research and developm ent o f  foss il pow er plants [1 -6 ]. A t  steam 
temperatures above 700°C , the fe rr it ic  and austen itic  heat resistant steel can't meet w ith  the 
strength requirem ents fo r  superheater, reheater and pipes. N i-based superalloys such as Inconel®
740H , A l lo y  617B and Haynes® 282® w i l l  be required.

Haynes® 282® is a n e w ly  developed y ' strengthened N i-based superalloy, w h ich  a llow s fo r  
service tem perature rang ing  fro m  649 to  927°C  [7 -1 4 ] and has been w id e ly  used fo r  aero engine 
and gas tu rb ine  app lica tions due to  a com bina tion  o f  exceptional creep strength, good therm al 
s ta b ility  and superior fa b rica b ility . Haynes In te rna tiona l Inc. reported the m icrostructure , 
m echanical properties and w e ld in g  perform ance [7 -1 4 ]. E P R I has also reported the e ffect o f  
p r io r  aging treatm ents on the creep properties o f  Haynes® 282® [15 ]. Some papers focused on the 
ox ida tion  and corros ion properties. F o r example, the thicknesses o f  ox ide  scale o f  Haynes® 282® 
afte r ox ida tion  in  f lo w  a ir at 871 °C, 927°C  and 982°C  fo r  1008 hours were investigated [14].
The corrosion resistance o f  Haynes® 282® in  the fue l com bustion s im u la tion  environm ent at 
871°C  fo r  1000 hours was also revealed [14 ]. W ate r vapor is kn o w n  to  considerab ly accelerate 
ox ida tion  rates o f  h igh  tem perature a lloys. C ycle  o x ida tion  testing  was carried at 760°C  and 
871 °C  in  a ir +  10% H 2O fo r  1,008 hours b y  V in a y  P. D eodeshm ukh and Nacera Sabrina M e ck
[16 ]. The ox ida tion  m echanism  o f  m etals in  steam is ve ry  d iffe re n t fro m  tha t in  a ir con ta in ing  
H 2O due to  the obvious lo w e r oxygen partia l pressure. Hence the ox ida tion  resistance in  steam is
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an im portan t p roperty  fo r  m ateria ls used in  A -U S C  pow er units. U p  to  now , there are rather 
l im ite d  data on the ox ida tion  resistance o f  Haynes 282 in  steam.

In  th is  paper the ox ida tion  behavio r o f  Haynes® 282® in  steam at 750°C  fo r  up to  2000 hours was 
investigated. The purpose is to  evaluate the steam ox ida tion  resistance o f  Haynes® 282® and the 
g row th  m echanism  o f  the oxide  scale in  steam w i l l  be discussed.

Materials and methods

M ate ria ls  fo r  the steam ox ida tion  w ere com m ercia l tubes o f  Haynes® 282® w ith  d im ensions o f  
® 3 8 *8 .8 m m , whose average gra in  size was A S T M  3. The chem ica l com position  is shown in  
Table 1. The tubes were cut and m achined in to  specimens w ith  d im ension o f  2 5 *1 2 *3 m m . The 
roughness was nearly  Ra 0.8p.m. The specimens w ere u ltrason ica lly  cleaned w ith  acetone and 
dried fo r  at least 12 hours before the ox ida tion  test.

The schematic d iagram  o f  the steam ox ida tion  test apparatus is shown in  F igure  1. The feed 
w ater was de ion ized and deaerated u n til d isso lved oxygen content was less than 20ppb. The 
specimens were under the p ro tection  o f  argon in  the process o f  startup and shutdown.
The ox ida tion  test was carried out at 750°C  fo r  up to  2000h. The specimens w ere respective ly  
taken out at 100 h, 300 h, 600 h, 1000 h and 2000 h in terva ls, and w ere weighed.

The phase structure o f  the oxide  was id e n tifie d  w ith  a S H IM A D Z U  7000-type X -ra y  
d iffrac tm e te r (X R D ). The m icrostructu re  and com pos ition  o f  the surface and the cross section o f  
the oxide  scale was analyzed w ith  an F E I Q U A N T A -4 0 0  scanning e lectron m icroscope (S E M ) 
and an O x fo rd  IN C A  X -ra y  spectrom eter (EDS).

Table 1 Chemical composition o f Haynes® 282® (wt. %)
Elements C Si Mn A l Ti Co S P Fe Cr Mo Nb+Ta Cu N i

weight percentage
o

0. 0.14 0.04 1.4 2.1 10.2 0.0009 80
o

0. 0.93 19.91 8.5 0.035 0.010 Bal.

A

A ,

I

9

10

12 13

-fir
Figure 1 Schematic diagram o f high-temperature steam oxidation test rig 

1-vacuum pump; 2-high purity argon; 3-water tank A ; 4-water tank B; 5-argon tube; 6- pressure gauge; 7- 
oxygen content meter; 8- water pump; 9- metering pump; 10- preheating furnace; 11-specimen furnace; 12-

condenser; 13-water tank C; 14- water pump.

Results and discussion

The w e igh ts  o f  the specimens w ere measured and the mass gains at d iffe re n t tim es were 
calculated. The ox ida tion  k in e tic  curve is p lo tted  in  F igure  2 in  term  o f  the average mass gain 
against ox ida tion  tim e. The f it t in g  fo rm u la  was as fo llo w s :
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A m257566=0.0006t (1)
2

W here Am  is mass gain (m g/cm  ); t  is o x ida tion  tim e  (hours). I t  is c lear tha t the ox ida tion  
k ine tics  obeys parabo lic  rule, in d ica tin g  tha t the o x ida tion  rate was con tro lled  b y  the d iffu s io n  
rate o f  the elem ent th rough the ox ide  scale. The mass gain in  steam at 750°C  fo r  1000h was 
nearly  4 tim es h igher than tha t o f  ox ida tion  testing  in  a ir+ 1 0 % H 2O at 760°C  fo r  1,008 hours [16 ], 
in d ica tin g  corros ion was m ore severe in  steam than in  a ir con ta in ing  w ater vapor.

The X R D  spectra o f  the oxide  scale o f  Haynes® 282® after ox ida tion  fo r  2000 hours is shown in  
F igure  3. The m a in  oxide  phases w ere T iO 2 and C r2O 3. The d iffra c tio n  peaks o f  the base m etals 
w ere obvious, in d ica tin g  the ox ide  scales were fa ir ly  th in .

oxide time ( h )

Figure 2 Oxidation kinetics o f Haynes® 282®

■ y phase

29 (° )

Figure 3 XRD spectra o f the oxide scale after steam oxidation test at 750°C for 2000 h
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Partic les w ith  sizes o f  0 .5~1^m  were observed on the scale o f  Haynes® 282® after ox ida tion  fo r  
100 hours (see F igure  4 (a)). The partic les g rew  up and connected w ith  each other w ith  an 
increase o f  ox ida tion  tim e, w h ich  were id e n tifie d  to  be T iO 2 b y  means o f  EDS analysis (see 
1000h-A  in  Table 2). The oxide  as m arked w ith  “ B ”  in  F igu re  4 (c) was considered to  be m ostly  
C r2O 3 due to  the fa ir ly  h igh  C r content. N o  spa lla tion  was found  in  a ll the specimens.

Figure 4 SEM morphologies o f the specimen surface after oxidation in steam for different time 
(a) 100 hours (b) 300 hours (c) 1000 hours (d) 2000 hours

The average com positions o f  the oxide  scale surface a fter o x ida tion  in  steam at 750°C  fo r  
d iffe re n t tim e  are shown in  Table 2. I t  can be obv ious ly  observed that the T i content increased, 
whereas the C r content decreased w ith  ox ida tion  tim e, suggesting the T iO 2 content in  the oxide 
scale increased d is tinc tly .

Table 2 Composition o f the oxide scale surface after oxidation in steam at 750°C (w t% )
Oxidation time O A l T i Cr Mn Fe Co N i
100h- Average 27.51 0.16 10.56 57.61 0.92 0.30 0.60 2.34

1000h- Average 32.98 / 14.18 49.19 1.40 0.47 0.84 0.93
2000h- Average 33.86 / 20.99 42.46 1.40 0.62 / 0.66

1000h-A 46.38 / 29.85 14.28 4.82 1.26 1.53 1.88
1000h-B 30.38 / 5.88 60.24 1.12 0.50 0.82 1.06
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Cross sectional images o f  the ox ide  scales after ox ida tion  at 750°C  are shown in  F igure  5. I t  can 
be seen that the ox ide  scale was composed o f  an external layer and an in te rna l ox ida tion  subscale. 
The in terna l ox ide  was n e t-like  and a long gra in  boundaries and sub-grain boundaries. The 
external scale thicknesses and the in te rna l penetration depths were measured and the ox ida tion  
k in e tic  curves w ere p lo tted  in  F igu re  6 (a). I t  is clear tha t the external scale th ickness and the 
in te rna l penetration depth bo th  increased w ith  ox ida tion  tim e, w h ich  bas ica lly  fo llo w s  the 
parabola law .

W e defined tw o  parameters as fo llo w s :

f; =
in terna l p en e tra tio n  depth

L  =

ex terna l scale th ickness in terna l p en e tra tio n  depth

ex ternal scale th ickness 

ex ternal scale th ickness 4- in terna l p en e tra tio n  depth

(2)

(3)

F igure  6 (b ) shows the re la tionsh ip  between the tw o  parameters and o x ida tion  tim e. I t  can be 
c lea rly  seen that f e increased bu t f i decreased w ith  ox ida tion  tim e, ind ica ting  the d iffu s io n  rate o f  
oxygen th rough  the external ox ide  scale decreased.

The elem ent d is tr ib u tio n  afte r o x ida tion  at 750°C  fo r  2000 h are g iven  in  F igure  7, and the EDS 
lin e  scanning (pos ition  in  F igure  5 (c)) results are shown in  F igure  8. I t  is clear tha t the external 
ox ide  scale was m a in ly  T iO 2 and C r2O 3, w h ich  is in  accordance w ith  the X R D  results. The 
d is tr ib u tio n  o f  T i was saddle-shaped, tha t is to  say tha t i t  was enriched at bo th  the gas/so lid  and 
oxide /m eta l interfaces. The m a in  elements fo r  the in terna l ox ide  were O and A l,  suggesting the 
in te rna l ox ide  was m ostly  composed o f  A l2O 3. A lth o u g h  there are oxide  s lig h tly  r ich  in  A l at the 
in terface o f  external scale and the metal, continuous A l2O 3 f i lm  was no t found  in  the external 
scale accord ing to  the elem ent d is tr ib u tio n  in  F igure  7. The N i and Co contents were bo th  fa ir ly  
lo w  in  the scale.

EDS linescanning i position

Figure 5 Cross-sectional morphology o f Haynes® 282® after oxidation at 750°C 
(a) 100h, (b) 1000h, (c) 2000h
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(a) (b)

oxide time (h) oxide time (h)

Figure 6 Oxidation kinetic curves (a) and f i and fe (b)

Figure 7 Element distribution maps o f the scale after steam oxidation at 750°C for 2000 hours

distance (^m)

Figure 8 EDS line scanning o f the scale after steam oxidation at 750°C for 2000 h

868



In  th is  paper, i t  was found  tha t the ox ide  scale o f  Haynes® 282® in  steam was composed o f  a 
T iO 2 +  C r2O3 external scale and an A l2O 3 in te rna l subscale. T iO 2 grains in  the external layer 
w ere fa ir ly  fin e  in  the early ox ida tion ; how ever, they g rew  up soon and connected w ith  each 
other afterwards. The T iO 2 content increased o b v ious ly  w ith  o x ida tion  tim e.

T i is one o f  the m ost im portan t elements to  strengthen h igh  tem perature superalloys, w h ich  can 
fo rm  y ' phase w ith  N i,  so as to  im prove  the h igh  tem perature strength o f  a lloys. Because the 
a ff in ity  o f  T i to  oxygen is h igher than tha t o f  Cr, T iO 2 is m ore lia b le  to  fo rm  than C r2O 3. 
A cco rd in g  to  the X R D  analysis, T iO 2 in  the scale o f  Haynes® 282® afte r ox ida tion  in  steam has a 
ru tile  structure. R u tile  is a k in d  o f  n -type  m etal ox ide  sem iconductor (M O S ), and i t  is usua lly  
lack  o f  O. R u tile  structure is quadrangle, o f  w h ich  each u n it ce ll consists o f  tw o  T i cations and 
fo u r O anions, T i cation is in  the octahedron composed o f  s ix  O anions, w hose coord ina tion  
num ber w ith  oxygen is 3. W hen the octahedron s lig h tly  deform s, a channel w i l l  fo rm  w h ich  
a llow s the ions o r atoms d iffuse  m ore easily. So T iO 2 is usua lly  be lieved  to  be less protective.

T iO 2 has gained w id e  a ttention and has been researched as a sem iconductor pho toca ta ly tic  
m ateria l. T iO 2 has super h y d ro p h ilic ity , nam ely, the contact angle o f  w a te r is less than 1° fo r  
T iO 2 f i lm  under U V  irra d ia tio n  o r heat treatm ent o f  h igher than 400°C  [17-19 ]. The reason is the 
surface o f  T iO 2 can prom ote adsorption and decom position  o f  H 2O. H 2O is p r io r  to  decompose 
in to  a free H  atom and an O H - ions on the (110) crysta l plane o f  T iO 2, as shown in  F igure  9 [20, 
21]. The O H - ions are also be lieved to  in troduce surface defects. A  Z e lle r et al. studied the effect 
o f  w ater vapor on the ox ida tion  behavio r o f  Y -T iA l a llo y  at 700°C , and found  that w ater vapor 
can lead to  a s ig n ifica n tly  h igher ox ida tion  rate; m eanw hile  i t  can also change the crys ta lline  
m orpho logy  and m icrostructu re  o f  the ox ide  scale [22 ]. I t  is be lieved  tha t w ater m olecules can 
react w ith  the ru tile  thus change its  defect structure, w h ich  can change the ox ida tion  mechanism. 
The studies on the o x ida tion  behavio r o f  T iA l a llo y  have shown that the d iffu s io n  rate o f  H  in  
ru tile  is faster fo r  4 ~ 5 orders than tha t in  the a -A l20 3 in  m agnitude [23, 24],

The existence o f  T i0 2 w i l l  destroy the in te g rity  o f  the pro tective  C r20 3 f ilm , thus lead to  a worse 
ox ida tion  resistance. A  m a in  idea to  im prove  the h igh  tem perature o x ida tion  resistance o f  T iA l 
a llo y  is to  prom ote the fo rm a tion  o f  a continuous, dense and p ro tective  A120 3 f i lm , and to  in h ib it  
the fo rm a tion  o f  T i0 2 [25 ], w h ich  can also be used fo r  Haynes® 282® to  fu rth e r im prove  its 
ox ida tion  resistance in  steam.

Figure 9 Two step adsorption process diagram o f H20  on the (110) crystal plane o f Rutile [23]
(a) Adsorption and (b) Decomposition

Conclusion

The ox ida tion  behavio r o f  Haynes® 282® was investigated in  steam at 750°C  fo r  up to  2000 
hours. The m icrostructure , phase constitutes and elem ent d is tr ib u tio n  o f  the oxide  scale was
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investigated. The ox ide  scale o f  Haynes® 282® in  steam was composed o f  a T iO 2 +  C r2O 3 
external scale and an A l2O 3 in terna l subscale. T iO 2 grains g rew  up and connected w ith  each other 
du ring  the ox ida tion , and the T iO 2 content increased obv ious ly  w ith  ox ida tion  tim e. T i was 
enriched both  at the gas/so lid  and ox ide/m eta l interfaces. T iO 2 is be lieved to  be ha rm fu l to  the 
ox ida tion  resistance o f  Haynes® 282® in  steam due to  its  p rom o tion  o f  the adsorption and 
decom position  o f  H 2O as w e ll as the h igher d iffu s io n  rate o f  H  in  it.
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