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Abstract

Advanced ultra-supercritical (A-USC) power plants operate at steam temperatures of 700°C and
above are the development trend of clean coal power generation technology. Haynes® 282* has
gained great attention as one of candidate materials for A-USC power units. In this paper the
oxidation behavior of Haynes® 282" in steam at 750°C for up to 2000h was investigated. The
oxidation kinetics was obtained and the microstructure, constitution and element distribution of
the oxide scales and the subsurface zones was studied. The results indicated that the oxide scale
of Haynes®™ 282" in steam was composed of a continuous external layer and an internal subscale.
The external scale was essentially composed of Cr,O3; and TiO, but the internal oxide was
mainly Al,O3. TiO; grains grew up and were connected with each other during the oxidation, and
the fractional volume of TiO; increased obviously with oxidation time. Ti was enriched both at
the gas/solid and oxide/metal interfaces. TiO, is believed to be harmful to the oxidation
resistance of Haynes® 282 in steam due to its promotion of the adsorption and decomposition of
H>O as well as the higher diffusion rate of H in it.

Introduction

The environmental restrictions on the fossil power generation plants require further increased
steam temperature and pressure. 700°C advanced ultra-supercritical (A-USC) power generation
technology is the direction of research and development of fossil power plants [1-6]. At steam
temperatures above 700°C, the ferritic and austenitic heat resistant steel can't meet with the
strength requirements for superheater, reheater and pipes. Ni-based superalloys such as Inconel®™
740H, Alloy 617B and Haynes® 282" will be required.

Haynes® 282% is a newly developed y' strengthened Ni-based superalloy, which allows for
service temperature ranging from 649 to 927°C [7-14] and has been widely used for aero engine
and gas turbine applications due to a combination of exceptional creep strength, good thermal
stability and superior fabricability. Haynes International Inc. reported the microstructure,
mechanical properties and welding performance [7-14]. EPRI has also reported the effect of
prior aging treatments on the creep properties of Haynes®™ 282% [15]. Some papers focused on the
oxidation and corrosion properties. For example, the thicknesses of oxide scale of Haynes® 282%
after oxidation in flow air at 871°C, 927°C and 982°C for 1008 hours were investigated [14].
The corrosion resistance of Haynes® 282% in the fuel combustion simulation environment at
871°C for 1000 hours was also revealed [14]. Water vapor is known to considerably accelerate
oxidation rates of high temperature alloys. Cycle oxidation testing was carried at 760°C and
871°C in air + 10% HO for 1,008 hours by Vinay P. Deodeshmukh and Nacéra Sabrina Meck
[16]. The oxidation mechanism of metals in steam is very different from that in air containing
H,0 due to the obvious lower oxygen partial pressure. Hence the oxidation resistance in steam is
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an important property for materials used in A-USC power units. Up to now, there are rather
limited data on the oxidation resistance of Haynes 282 in steam.

In this paper the oxidation behavior of Haynes® 282® in steam at 750°C for up to 2000 hours was
investigated. The purpose is to evaluate the steam oxidation resistance of Haynes® 282® and the
growth mechanism ofthe oxide scale in steam w ill be discussed.

Materials and methods

Materials for the steam oxidation were commercial tubes of Haynes® 282® with dimensions of
®38*8.8mm, whose average grain size was ASTM 3. The chemical composition is shown in
Table 1. The tubes were cut and machined into specimens with dimension of 25*12*3mm. The
roughness was nearly Ra 0.8p.m. The specimens were ultrasonically cleaned with acetone and
dried for at least 12 hours before the oxidation test.

The schematic diagram of the steam oxidation test apparatus is shown in Figure 1. The feed
water was deionized and deaerated until dissolved oxygen content was less than 20ppb. The
specimens were under the protection of argon in the process of startup and shutdown.

The oxidation test was carried out at 750°C for up to 2000h. The specimens were respectively
taken out at 100 h, 300 h, 600 h, 1000 h and 2000 h intervals, and were weighed.

The phase structure of the oxide was identified with a SHIMADZU 7000-type X-ray
diffractmeter (XRD). The microstructure and composition of the surface and the cross section of
the oxide scale was analyzed with an FEl QUANTA-400 scanning electron microscope (SEM)
and an Oxford INCA X-ray spectrometer (EDS).

Table 1 Chemical composition of Haynes® 282® (wt. %)
Elements C Si Mn Al Ti Co S P Fe Cr Mo Nb+Ta Cu Ni
weight percentage © 014 0.04 14 21 102 0.0009 © 093 1991 85 0.035 0.010 Bal.
o O o

12 13

-Fir
Figure 1 Schematic diagram of high-temperature steam oxidation test rig
1-vacuum pump; 2-high purity argon; 3-water tank A; 4-water tank B; 5-argon tube; 6- pressure gauge; 7-
oxygen content meter; 8- water pump; 9- metering pump; 10- preheating furnace; 11-specimen furnace; 12-
condenser; 13-water tank C; 14- water pump.

Results and discussion

The weights of the specimens were measured and the mass gains at different times were
calculated. The oxidation kinetic curve is plotted in Figure 2 in term of the average mass gain
against oxidation time. The fitting formula was as follows:
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A m?°7%=0.0006t (1)

Where Am is mass gain (mg/cm?); t is oxidation time (hours). It is clear that the oxidation
kinetics obeys parabolic rule, indicating that the oxidation rate was controlled by the diffusion
rate of the element through the oxide scale. The mass gain in steam at 750°C for 1000h was
nearly 4 times higher than that of oxidation testing in air+10%H,0 at 760°C for 1,008 hours [16],
indicating corrosion was more severe in steam than in air containing water vapor.

The XRD spectra of the oxide scale of Haynes® 282" after oxidation for 2000 hours is shown in
Figure 3. The main oxide phases were TiO; and Cr;0s. The diffraction peaks of the base metals
were obvious, indicating the oxide scales were fairly thin.
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Figure 3 XRD spectra of the oxide scale after steam oxidation test at 750°C for 2000 h
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Particles with sizes of 0.5~1"m were observed on the scale of Haynes® 282® after oxidation for
100 hours (see Figure 4 (a)). The particles grew up and connected with each other with an
increase of oxidation time, which were identified to be TiO2 by means of EDS analysis (see
1000h-A in Table 2). The oxide as marked with “B” in Figure 4 (c) was considered to be mostly
Cr203 due to the fairly high Cr content. No spallation was found in all the specimens.

Figure 4 SEM morphologies of the specimen surface after oxidation in steam for different time
(@) 100 hours (b) 300 hours (c) 1000 hours (d) 2000 hours

The average compositions of the oxide scale surface after oxidation in steam at 750°C for
different time are shown in Table 2. It can be obviously observed that the Ti content increased,
whereas the Cr content decreased with oxidation time, suggesting the TiO 2 content in the oxide
scale increased distinctly.

Table 2 Composition of the oxide scale surface after oxidation in steam at 750°C (wt%)

Oxidation time (@] Al Ti Cr Mn Fe Co Ni
100h- Average 2751 0.16 10.56 57.61 0.92 0.30 0.60 2.34
1000h- Average 32.98 / 14.18 49.19 1.40 0.47 0.84 0.93
2000h- Average 33.86 / 20.99 42.46 1.40 0.62 / 0.66
1000h-A 46.38 / 29.85 14.28 4.82 1.26 1.53 1.88
1000h-B 30.38 / 5.88 60.24 1.12 0.50 0.82 1.06
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Cross sectional images ofthe oxide scales after oxidation at 750°C are shown in Figure 5. It can
be seen that the oxide scale was composed of an external layer and an internal oxidation subscale.
The internal oxide was net-like and along grain boundaries and sub-grain boundaries. The
external scale thicknesses and the internal penetration depths were measured and the oxidation
kinetic curves were plotted in Figure 6 (a). It is clear that the external scale thickness and the
internal penetration depth both increased with oxidation time, which basically follows the
parabola law.
We defined two parameters as follows:

internal penetration depth

external scale thickness internal penetration depth )

external scale thickness

external scale thickness 4- internal penetration depth 3)
Figure 6 (b) shows the relationship between the two parameters and oxidation time. It can be
clearly seen that feincreased but fi decreased with oxidation time, indicating the diffusion rate of
oxygen through the external oxide scale decreased.

The element distribution after oxidation at 750°C for 2000 h are given in Figure 7, and the EDS
line scanning (position in Figure 5 (c)) results are shown in Figure 8. It is clear that the external
oxide scale was mainly TiO2 and Cr203, which is in accordance with the XRD results. The
distribution of Ti was saddle-shaped, that is to say that it was enriched at both the gas/solid and
oxide/metal interfaces. The main elements for the internal oxide were O and Al, suggesting the
internal oxide was mostly composed of A1203. Although there are oxide slightly rich in Al at the
interface of external scale and the metal, continuous A 1203 film was not found in the external
scale according to the element distribution in Figure 7. The Ni and Co contents were both fairly
low in the scale.

EDS linescanningiposition

Figure 5 Cross-sectional morphology of Haynes® 282® after oxidation at 750°C
(a) 100h, (b) 1000h, (c) 2000h
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Figure 6 Oxidation kinetic curves (a) and fi and fe(b)

Figure 7 Element distribution maps of the scale after steam oxidation at 750°C for 2000 hours

distance (“m)

Figure 8 EDS line scanning ofthe scale after steam oxidation at 750°C for 2000 h
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In this paper, it was found that the oxide scale of Haynes® 282® in steam was composed of a
TiO2 + Cr203 external scale and an AIl203 internal subscale. TiO2 grains in the external layer
were fairly fine in the early oxidation; however, they grew up soon and connected with each
other afterwards. The TiO 2 content increased obviously with oxidation time.

Ti is one ofthe most important elements to strengthen high temperature superalloys, which can
form y' phase with Ni, so as to improve the high temperature strength of alloys. Because the
affinity of Ti to oxygen is higher than that of Cr, TiO2is more liable to form than Cr203.
According to the XRD analysis, TiO2in the scale of Haynes® 282® after oxidation in steam has a
rutile structure. Rutile is a kind of n-type metal oxide semiconductor (MOS), and it is usually
lack of O. Rutile structure is quadrangle, of which each unit cell consists oftwo Ti cations and
four O anions, Ti cation is in the octahedron composed of six O anions, whose coordination
number with oxygen is 3. When the octahedron slightly deforms, a channel will form which
allows the ions or atoms diffuse more easily. So TiO 2is usually believed to be less protective.

TiO2 has gained wide attention and has been researched as a semiconductor photocatalytic
material. TiO2 has super hydrophilicity, namely, the contact angle of water is less than 1° for
TiO2film under UV irradiation or heat treatment of higher than 400°C [17-19]. The reason is the
surface of TiO 2 can promote adsorption and decomposition of H20. H20 is prior to decompose
into a free H atom and an OH-ions on the (110) crystal plane of TiO 2, as shown in Figure 9 [20,
21]. The OH-ions are also believed to introduce surface defects. A Zeller et al. studied the effect
of water vapor on the oxidation behavior of Y-TiAl alloy at 700°C, and found that water vapor
can lead to a significantly higher oxidation rate; meanwhile it can also change the crystalline
morphology and microstructure of the oxide scale [22]. It is believed that water molecules can
react with the rutile thus change its defect structure, which can change the oxidation mechanism.
The studies on the oxidation behavior of TiAl alloy have shown that the diffusion rate of H in
rutile is faster for 4 ~ 5 orders than that in the a-Al20 3in magnitude [23, 24],

The existence of Ti0O 2w ill destroy the integrity ofthe protective Cr20 3film, thus lead to a worse
oxidation resistance. A main idea to improve the high temperature oxidation resistance of TiAl
alloy is to promote the formation of a continuous, dense and protective A120 3film, and to inhibit
the formation of Ti02 [25], which can also be used for Haynes® 282® to further improve its
oxidation resistance in steam.

Figure 9 Two step adsorption process diagram of H20 on the (110) crystal plane of Rutile [23]
(a) Adsorption and (b) Decomposition

Conclusion

The oxidation behavior of Haynes® 282® was investigated in steam at 750°C for up to 2000
hours. The microstructure, phase constitutes and element distribution of the oxide scale was
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investigated. The oxide scale of Haynes® 282" in steam was composed of a TiO, + Cr,03
external scale and an Al,Os internal subscale. TiO, grains grew up and connected with each other
during the oxidation, and the TiO, content increased obviously with oxidation time. Ti was
enriched both at the gas/solid and oxide/metal interfaces. TiO; is believed to be harmful to the
oxidation resistance of Haynes® 282% in steam due to its promotion of the adsorption and
decomposition of H,O as well as the higher diffusion rate of H in it.
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