

Data Patterns and Links to Materials Theory: Theoretical Foundations for Heuristic Pattern Detection

Kim F. Ferris

Pacific Northwest National Laboratory

email: <u>kim.ferris@pnl.gov</u> • phone: (509) 375-3754 • fax: (509) 375-2290

Bobbie-Jo M. Webb-Robertson Pacific Northwest National Laboratory

Battelle

Dumont M. Jones Proximate Technologies, LLC

Tutorial Outline

Context relating to other presentations – before and after

Goals

- Why pay attention?
- Bookkeeping Contacts, Relevant Publications, Glossary
- Information architecture
 - Data
 - Models
 - Role of descriptors in model development
- Structure diagrams
 - Mathematical context of structure diagrams
 - Structure/loading plots
 - Historical perspective on structure diagrams
 - Pettifor plot original/reformatted data
- Levels of data
 - PCA/LDA diversity –Bulk Modulus example
 - First Principles Information

Reviewing Context from CALculation of PHase Diagrams (CALPHAD)

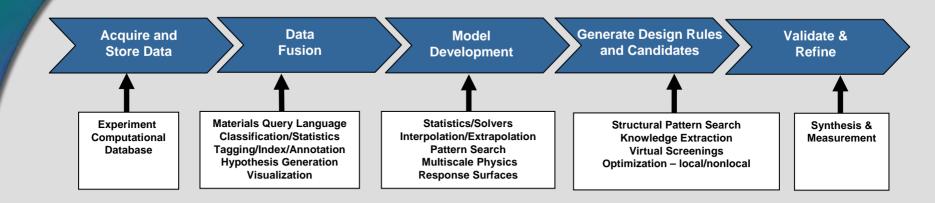
- Thermodynamic data and phase descriptions are fundamentally linked to the crystal structures – hence information linked to a crystallographic database is inherently useful.
- Data mining and statistical tools can be used to search for data and to pre-process the data in preparation for the CALPHAD-type optimizations.
- Crystal structures are an underlying basis of ab initio calculations, and address holes in the experimental data-sets.

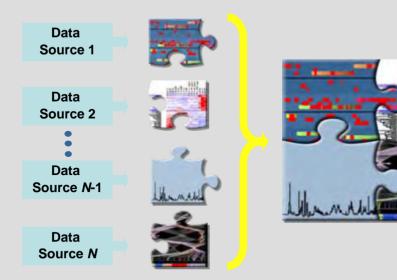
Projecting Context for Data Mining

- Thermodynamic, energetic, crystal phase is fundamentally linked to materials behavior.
- ► No database is ever totally complete or current.
- Data mining/knowledge extraction tools can be used to search for property mappings and design rules.
- Model-driven exploration combined with highthroughput experiments accelerates discovery

Goals for this Section

Appreciation for:


Information architecture


- Structure Maps (example: crystal structure)
- Model Development
 - Need for formal knowledge extraction methods
 - Different Levels of Information
 - Data diversity
 - First principles electronic structure
 - Experimental measurement

Information Architecture

Want to combine information from disparate data sources *but first you have to have data ...* <u>appropriate</u> data

Data Requirements

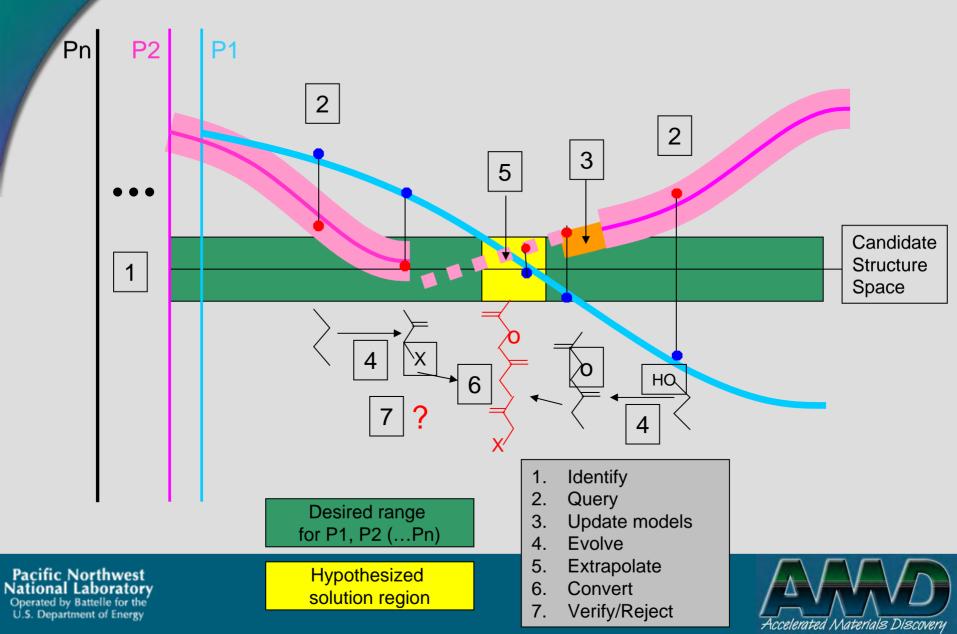
🗷 Microsoft Excel - balcerzyk icsd construction.xls															
:2	<u>Eile E</u> dit <u>V</u>	/jew <u>I</u> nsert I	F <u>o</u> rmat <u>T</u> ools (<u>D</u> ata <u>W</u> indow	<u>H</u> elp Ado <u>b</u> e P	DF									Type a quest
: •	💕 🔒 🔒 I	🖪 🛕 🥙	🕵 🔏 🖻 🛍	- 🛷 🗠 -	0 - 1 0 - 5 -	<u>≵</u> ↓ <u>X</u> ↓ <u>111</u> <i>4</i> 3	100%	* E Arial		• 8	- B	л п∣≡ :	= = =	\$ % , 5	e ≣≽ 00. 0
_		-					100 10				· · · · ·			φ /0 / .	00 →.0 === =
1			5 🔰 💺 😥	₩ø Reply with 9	<u>C</u> hanges E <u>n</u> d Re	eview									
	K6 🗸	• f _x =((E6+G6+l6)*J6												
	A	В	C D	E F	G H	I J	K	L	M	N	0	Р	Q	R	S
1	cmpd		_			El3_count Z cell_			_	_		mw		density_exp	
2	Y2SiO5	monoclinic	852.66 Y	2 Si	10	5 8	64	16.5	2.433	2.671	2.528	8942	2287 1536	4 454258788	1 23847723
3	Gd2SiO5	monoclinic	_			X-spa	20					× ×		scrip	tore
4	LuPO4	tetragonal	_			N-Spa								sciip	1015
	YPO4	tetragonal	286.53 Y	1 P	10	4 4	24	14.33333333		2.671	2.528	211	/3	4 5 45 44 5000	4 20400246
6	Y3AI5012 YAI03	cubic orthorhomhic	1734.92 Y 201.95 Y	3 AI	50	12 8 3 4	160 20	13.9	2.433	2.671	2.528	3.61804 163.885588		4.545415908	1.28190348
8		orthorhe mbic trigonal	201.95 Y 339.21 Lu	1 AI	10	3 4	30	15.2 20		2.671	2.528 2.528	233.7762	655.542352 1402.6572		1.505323
9			104.92 Lu		10	3 2	10	20	2.433	2.671	2.520	233.7762	467.5524	7.399936828	1.90621425
10	BaF2	hexago cubic	237.91 Ba		1 F	1 4	10	24.666666667	2.433	2.671			701.2952256	4.894904113	1.24416796
11	LaF3	trigonal	333.36 La	1 F	3	6	24	24.00000007	2.433	2.671	2.528		1175.404258	5.855038776	1.5118790
12	CaF2	cubic	163.78 Ca		3	4	12	12.666666667	2.433	2.671	2.528		312.2992256	3.166401948	0.92807424
		trigonal	82.1 Y	20	2 5	► 1 1	5	22	2.433	2.671	2.528	241.8755	241.8755		1.33982947
14	Y203		1191.62 Y	20	3	16	80	20.4		2.671	2.528	225.8099		5.034787912	1.36956412
15	InBO3	trigonal	310.83 In	1 8	10			20.1	2.100	2.011	2.020	220.0000	0012.0001	0.001101012	0564617
16	ScB03	trigonal 🕡	297.96 Sc	1.8	10	💙 D (Λ	B)	n(n)	1 0	(n		0 (n)		(n)	0684655
17		trigonal	339.21 Lu	1.8	10		$\mathbf{D} \sim \mathbf{C}$	$a_1(p_a)$	+a	2 P	'b/ ⁺	$a_3(p_c)$	$) + a_4$	(P_d)	6881577
18		hexago 🕢	104.92 Lu	1 B	1 0	3 2	18	20		2.671	2.528	233.7762	467.5524	7.399936828	1.90621425
19	ҮВО З	monocli	326.73 Y	1 B	10	3 6	30		2.433	2.671	2.528	147.71505	886.2903	4.504462616	1.2487374
20	GdBO3	trigonal ≻	1018.39 Gd	1 B	10	3 18	90	18.6	2.433	2.671	2.528	216.0592	3889.0656	6.341429173	1.6437710
21	LaPO4	monocli	307 La	1 P	1 0	4 4	24	17.33333333	2,433	2.671	2.528	233.876861	935.507444	5.060167299	1.3550488
22	ScPO4	tetragor	250.83 Sc	1 P	1 0	4 4	24	11.38333333	2.433	2.671	2.528	139.927271	559.709084	3.705432283	1.08439979
23	Y2SiO5	monocli	852.66 Y	2 Si	1 0	5 8	64	18.5	2.433	2.674	2.528	285.8942	2287.1536	4.454258788	1.23847723
24	Y3AI5012	cubic	1734.92 Y	3 AI	50	12 8	160	13.9	2.433	2.671	2.528	59761804	4748.94432	4.545415908	1.28190348
25	Y2O3	cubic	1191.62 Y	2 0	3	16	80	20.4	2.433	2,671	2.528	225.8099	3612.9584	5.034787912	1.36956412
26	ScBO3	trigonal	297.96 Sc	1 B	1 0	3 6	30	10	2.433	2.671	2.528	103.76511	622.59066	3.469769611	1.00684655
27	InBO3		310.83 In	1 B	1 0	3 6	30	15.6	2.433	2.671	2.528	173.6273	1041.7632	5.565473089	1.50564617
28	YB03	ma	326.73 Y	1 B	1 0	3 6	30	13.6	2.433	2.671	2.528	147.71505	886.2903		1.2487374
29	ScPO4	tetra	250.83 Sc	1 P	1 0	4 4	24	11.33333333	2.433	2.671	2.528	139.927271		3 705432283	1.08439979
30	YPO4	tetrago	286.53 Y	1 P	1 0	4 4	24	14.33333333	2.433	2.671	2.528	183.877211	735. CI	oraa	20057236
31	LaPO4	monoclini	307 La	1 P	1 0	4 4	24	17.33333333	2.433	2.671	2.528	233.876861	935. J	torage	e .3550488
32	Gd2O2S	trigonal	85.59 Gd	20	2 S	1 1	5	32		2.671	2.528	378.5638	31		B6937726
33	LaOCI	Entri	6.48 La	10	1 CI	1 2	6	27.33333333	2.433	2.671	2.528	190.3579		5.427571362	1.40796703
34		Entri		2 S	20	1 4	20	33.6	2.433	2.671	2.528	394.6294	1578.5176		1.68941850
35	Y2S2O	lifted Palcoraule	4.05 Y	2 S constants / c	20	1 4	20 s / cleaning p		2.433 erzyk list	2.671	2.528	257.9411	1031.7644	4.461169999	1.2290066
14 4	www.inco	inieu balcerzyk	X notes X cell_0	constants / s	anuerson charge	s it issu distance	s X cleaning p	aren's X balce	Brzyk IISI				_		

Ready

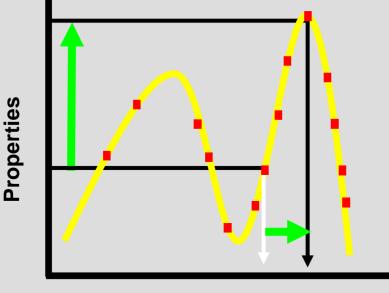
Basic Tasks of Materials Informatics

- Data Management archival, anomoly detection
- Statistical data transformation
- Information Hierarchy joining multiscale information
- Classification identification of rich/poor regions
- Regression structure/property correlations
- Pattern Recognition
 - Diversity needs to be appropriate to problem, multi-class
 - Feature development mathematical relationships: maybe; design rules: yes.

Basic Requirement: Good Physical Model


Why Materials Informatics Matters

- Develops design rules
- Distinguishes a material's 'newness'
 - Precedented
 - Precedented in another application
 - Novel not precedented
- Identifies 'candidate' materials based on multiple performance criteria
- Identifies trade-offs in materials specifications
- Manages database of problem-relevant materials and descriptors
- Finds anomalies in data potential error, potential new science



Schematic for Multiple Property Mapping

Identify New Structures

Moving from existing to new materials

Structure

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Goal

 Employ existing materials trends to propose new materials with improved properties

Tools

- Genetic and conventional evolution
- Structural signatures and models

Issues

Incomplete or complex models

"Acme-Brand" Coating Candidates

Structural Repeat Unit	RI	CD	CAS #	Epoxide CAS #
-[C(X)(X)C(CX ₃)(X)O]-	1.29	0.25	aaaaaa-bb-c	aaa-bb-c
-[C(X)(X)C(CX ₃)(CX ₃)O]-	1.29	0.25	-	aaa-bb-c
-[C(X)(X)C(CX ₂ CX ₃)(X)O]-	1.29	0.24	aaaaaa-bb-c	aaaa-bb-c
-[C(CX ₃)(CX ₃)C(CX ₃)(CX ₃)O]-	1.29	0.21	-	aaaa-bb-c
-[C(X)(X)C(CX ₂ H)(CX ₃)O]-	1.30	0.35	-	aaaa-bb-c
$-[C(CX_2H)(CX_3)C(CX_2H)(CX_3)O]-$	1.30	0.33	-	-
-[C(X)(X)C(CX ₂ H)(X)O]-	1.31	0.35	-	-
-[C(X)(X)C(X)(H)O]- *1	1.32	0.33		
-[C(OH)(CX ₃)C(X)(X)]- *2	1.32	0.30		
-[C(OH)(X)C(X)(X)]- *2	1.33	0.33		
-[OC(X)(X)C(X)(X)OC(=O)]-	1.33	0.25		
-[C(X)(X)C(CX ₃)(X)OC(=O)]-	1.34	0.25		
-[C(X)(X)C(CX ₂ H)(X)OC(=O)]- *1	1.34	0.25		

* Designation denotes synthetically particularly difficult

¹ β H results in HX elimination during synthesis

² No obvious monomer reactive group for polymerization

Identifying Materials through Multi-stage Screening

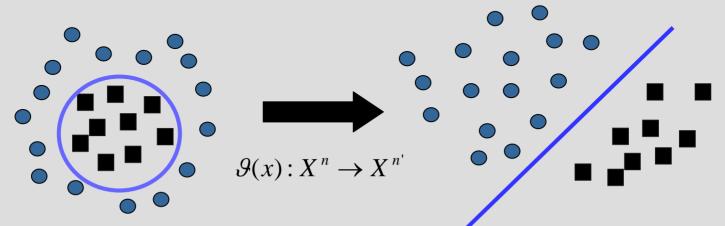
Step	Rules applied	Possible Candidate Count
Basis	Binaries A _m B _n : m,n = 1,2,3 x 7 crystal systems	311,850
Element screen	Single crystal phase	204,120
Function of element only	(Background Regulation)	139,293
F(A) or F(B)	(High Cross-section)	49,140
	(Avoided Reactivity)	44,289
	(Avoided chemistry)	27,405
Formula screen	(Valence Rules)	2,240
Function of formula only	(Crystal Polymorphs)	24
F(AB)	Hygroscopic	n/a
Global screen	Band Gap	n/a
Function of formula and structure	Mechanical	n/a

Structure Maps Revisited

- CALPHAD is a model-driven approach to the phase diagram of a material
- Are there other approaches to predicting the crystal structure of a material?
- ► Obviously, yes. \rightarrow Structure map

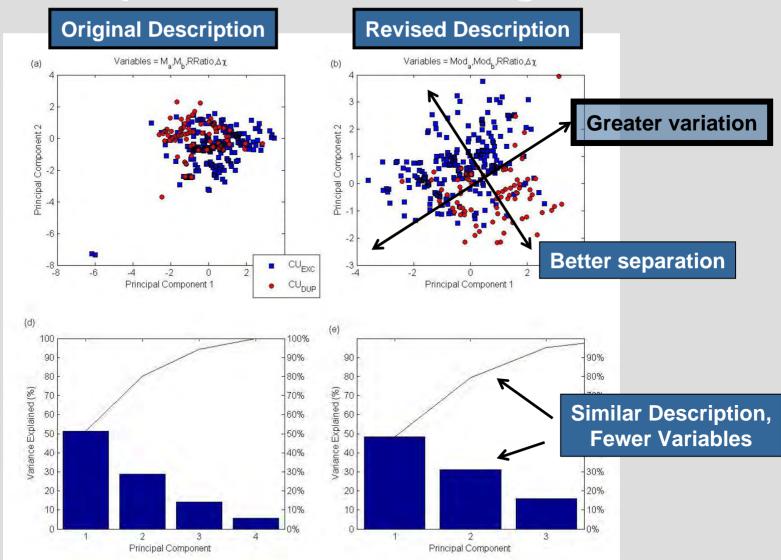
First principles calculation

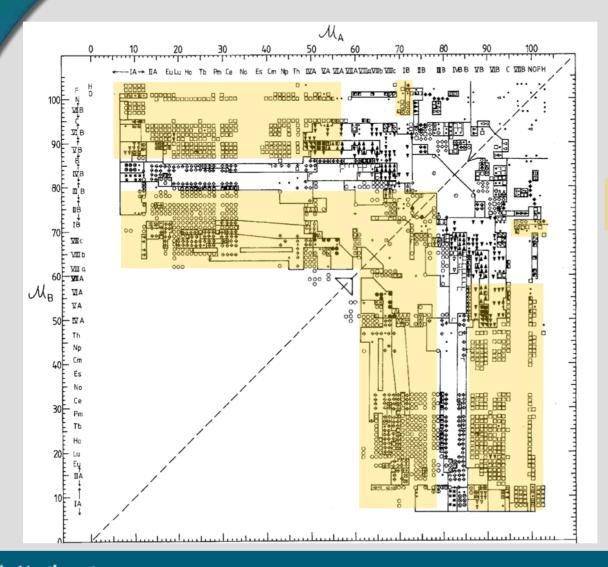
Basic Tasks for Materials Informatics


- Data Management
- Information Hierarchy
- Classification
- Regression
- Pattern Recognition
 - Diversity
 - Feature development

Mathematical Basis for Structure Plots

 $P_i(AB) \sim a_1(p_a) + a_2(p_b) + a_3(p_c) + a_4(p_d) \dots$


- 1. Variable selection (which measurements contribute to separability)
- 2. Reduced dimensionality representation (latent variables)



Model Development and Knowledge Extraction

Accelerated Materials Discovery

Structure Maps Revisited: Pettifor

Cubic structure spaces

D.G. Pettifor, "The structures of binary compounds: Phenomenological structure maps," *J. Phys. C* 19 285-313 (1986).

Accelerated Materials Discovery

Structure Maps Revisited: QSD/QFD

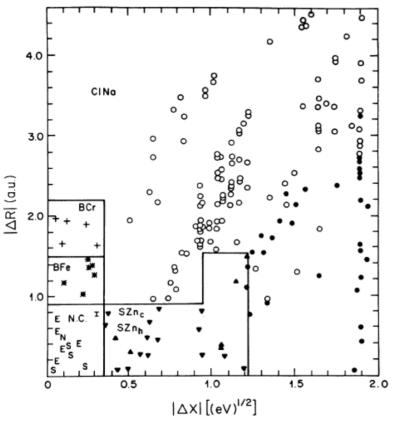


FIG. 2. Example of a binary quantum structural diagram for $A^{N}B^{8-N}$ compounds, taken from Ref. 9, but refined to distinguish between compounds which contain transition metals, rare earths, or actinides (crosses, stars, and open circles) and those which do not (solid symbols).

QSD: Quantum Structure Diagram QFD: Quantum Formation Diagram

 'Structure' concept extended to different properties

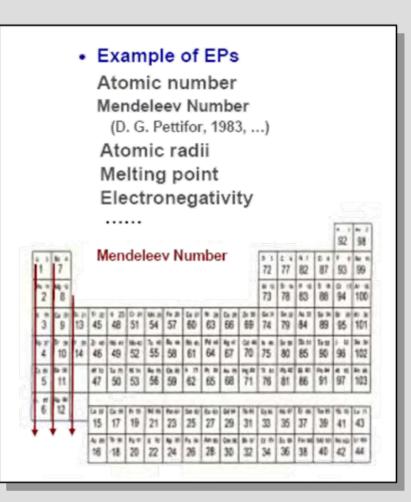
Extensions to ternary, high-Tc, ferromagnetic, ...

K.M. Rabe, J.C. Phillips, P. Villars, I.D. Brown, "Global multinary structural chemistry of stable quasicrystals, high-Tc ferroelectrics, and high-Tc superconductors," *Phys. Rev B* 45 7650-76 (1992).

Elemental Mappings: Pettifor

6 most distinct EPP groups

Atomic number Group number Mendeleev number Cohesion energy Electrochemical factor Size


Operations

Sum	EP(A)+EP(B)
Difference	EP(A)-EP(B)
Product	EP(A)*EP(B)
Ratio	EP(A)/EP(B)
Maximum	Max(EP(A),EP(B))
Minimum	Min(EP(A),EP(B))

EPP

EP(tot) = EP(A) op EP(B)

Reference: www.umekkii.jp

Signature / Model Development

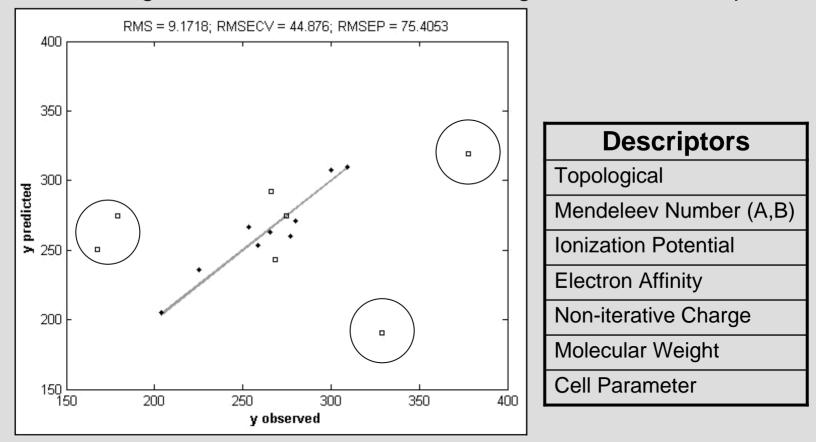
Signature: a (composite) descriptor that explains some data.

Signatures/models:

- improve knowledge of detector behavior
- simplify and factor the overall design problem

►Tools

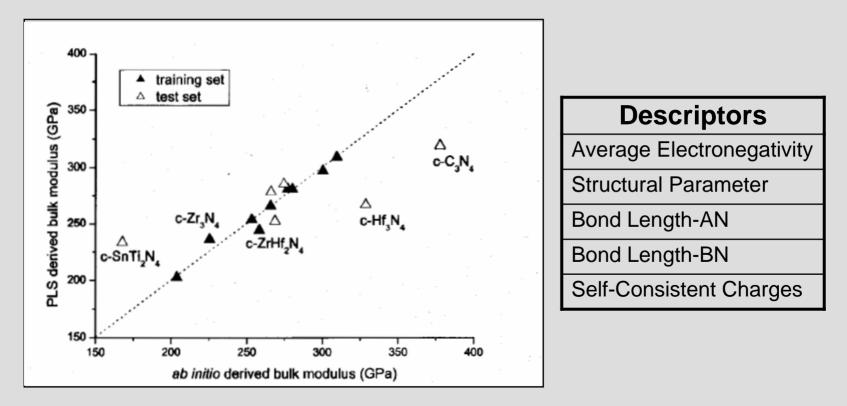
- principal components analysis (PCA)
- partial least squares (PLS)
- projection pursuit (PP)
- supervised learning theory
 - decision tree
 - neural net
 - support vector machine
- Issues
 - sparse data
 - incomplete descriptors


Model / Signature Examples

Model	Key signature				
Protein function classifier	Sequence + property				
Polymer glass-	Effective				
transition	sidechain/backbone mass				
temperature	ratio				
Insecticide	CLogP (Physical)				
effectiveness	Functional group (Chemical)				
IR-spectrum	1550 wavenumber peak →				
determination of	C=O				
structure	…				
Luminescence	Energy level differences between dopant and host				

Need for Data: Model Development

Constructing a model for bulk modulus using elemental descriptors


C. Suh and K. Rajan, "Combinatorial design of semiconductor chemistry for bandgap engineering: 'virtual' combinatorial experimentation," *Appl. Surf. Sci.* 223 148 (2004).

Better Data: Better Model Development

Constructing a model for bulk modulus using elemental descriptors

Reference: Suh, Rajan (2005); Ching, J.Am.Cer.Soc. 85 75-80 (2002).

Descriptors from First Principles Computations

- Descriptors for an AB compound fall into several classes:
 - Elemental
 - Compositional
 - Structural

Elemental

- •Size
- •Heat
- •Electrochemical
- Valence Electron
- Atomic Number
- Mendeleev Number
- •Magnetic and electrical
- •Thermodynamic

 $P_{i}(AB) \sim f(A_{i}, B_{i})$ $P_{i}(AB) \sim f(AB_{i})$ $P_{i}(AB) \sim f(AB_{i}, CS_{AB})$

Compositional

- Thermodynamic; H, S, G
- Chemical Bonding
- Charge
- Structural
- Topological
- Electric and Magnetic
- Susceptibilities
- Mobilities
- Activation energies, kinetics

Structural

- Madulung Energies
- Dielectric Tensors
- Light scattering
- Topological

P. Villars, K. Brandenburg, M. Berndt, S. LeClair, A. Jackson, Y.-H. Pao, B. Igelnik, M. Oxley, B. Bakshi, P. Chen, S. Iwata, "Interplay of large materials databases, semi-empirical methods, neuro-computing, and first principles calculations for ternary compound former/nonformer prediction," *Eng. Appl. Art. Intell.* 13 497-505 (2000).

Limitations to the Data-Driven Approach

- Cannot provide insight into microscopic mechanism
- •Limited experimental data leads to incomplete separation of different domains

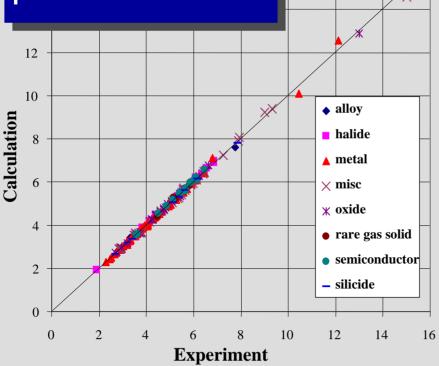
Combining First Principles Approaches

Further Motivation for First Principles

Atomistic Level Simulation of Materials

- To explain electronic level and microscopic mechanisms for experimental measurements.
- To predict unknown substance and unknown properties.

First Principles Computations for Materials Informatics


MRS Bulletin, Sept. 2006 Issue

- Mechanical Properties and Structured Materials
- Catalysis and Surface Science
- Magnetism and Magnetic Materials
- Oxides and Minerals
- Semiconductors and Nanotechnology
- Biomaterials

Model Performance and Characteristics

181 lattice parameters for crystals containing elements across the periodic table

V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, R. H. Nobes, *Int. J. Quant. Chem.* 77, No5, 895-910 (2000).

- Inputs: atomic numbers, crystal coordinates
- Energies, forces, stresses, structures and properties are *PREDICTED* with minimal input
- Most elements in the periodic table
- Molecules, solids, surfaces, and interfaces
- Validated through 1000's of publications in peer reviewed journals
- Computationally intensive

Accelerated Materials Discovery

Nanoscience: Do It Yourself! (Eds.), John von Neumann Institute for Computing, Julich, NIC Series, Vol. 31, ISBN 3-00-017350-1, pp. 85-129, 2006.

National Laboratory Operated by Battelle for the U.S. Department of Energy

Descriptors from First Principles Computations

- Descriptors for an AB compound fall into several classes:
 - Elemental
 - Compositional
 - Structural

Elemental

- •Size
- •Heat
- •Electrochemical
- Valence Electron
- Atomic Number
- Mendeleev Number
- •Magnetic and electrical
- •Thermodynamic

 $P_{i}(AB) \sim f(A_{i},B_{i})$ $P_{i}(AB) \sim f(AB_{i})$ $P_{i}(AB) \sim f(AB_{i},CS_{AB})$

Compositional

- Thermodynamic; H, S, G
- Chemical Bonding
- Charge
- Structural
- Topological
- Electric and Magnetic
- Susceptibilities
- Mobilities
- Activation energies, kinetics

Structural

- Madulung Energies
- Dielectric Tensors
- Light scattering
- Topological

Combining First Principles and Knowledge Base

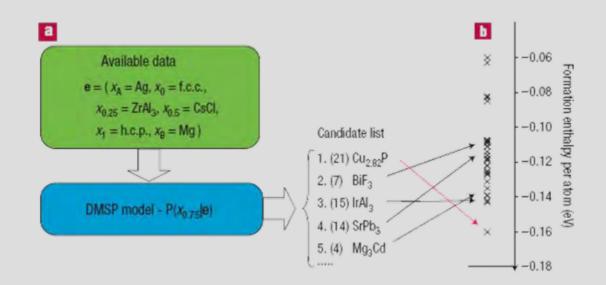


Figure 3 Predicting the structure of AgMg₃. a, DMSP prediction (candidate list) of the crystal structure of AgMg₃ on the basis of the limited data available at other compositions (green box). The structures are ordered by decreasing probability within the DMSP model. This ordering is compared with a ranking on the basis of the frequency with which these structures occur in the experimental database (parenthesized value in candidate list). b, *Ab initio* formation enthalpy (with respect to the pure elements) of the top five structures along with 26 additional structure types calculated to aid in verifying the prediction.

C.C. Fischer, K.J. Tibbetts, D. Morgan and G. Ceder, "Predicting crystal structure by merging data mining with quantum mechanics," *Nature Materials* 5 641-6 (2006).

Quick Summary + First Principles

- Consistent with information-architecture
- "More" information, more diverse
- Added element for developing models and establishing their range of validity
- More than one valid model
 - alternate method for phase predictions
 - provides large basis of 'chemical' descriptors
 - computationally intensive
 - requires structural information
 - high accuracy

