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Abstract 

 
The enhancement of efficiency in gas turbine engines requires the development of new 

superalloys capable of withstanding higher temperatures. The development of novel industrial 

cast and wrought (C&W) disk alloys with required combination of strength, creep and fatigue 

resistances at 700°C is particularly desired due to the expensive cost of powder metallurgy. In 

this context, new C&W disk alloys were recently developed to fulfill these requirements. TMW4 

shows higher properties than the current C&W disk alloy despite an expensive cost due to its 

high cobalt content, where as 718Plus presents a moderate cost with restricted creep properties at 

700°C compared to the current U720Li disk alloy. The new nickel base superalloys developed by 

Aubert & Duval were therefore designed to offer a better compromise between high temperature 

properties at 700°C and cost. This paper describes the alloys metallurgical features and the alloys 

design partly based on phase diagrams modeling. The study was firstly carried out on small 

ingots of 6kg to optimize the chemistry before forging by industrial processes 200kg ingots. The 

ability to be processed by the conventional cast & wrought route and the control of the highly 

expensive elements contents confer to the alloys an attractive cost comparable to that of 718Plus 

alloy. The high amount of gamma prime and the molybdenum-tungsten levels insure higher 

creep and tensile properties than those obtained with 718Plus. Tensile, creep, fatigue, long-term 

aging tests show that the new alloys have high mechanical properties up to 700°C. Based on 

these results, it should be possible to extend performance capabilities, in terms of cost and 

mechanical properties, of most current C&W superalloys for turbine disks. 

 

Introduction 
 

The latest design of high-efficiency engines has high requirements for the mechanical properties 

and temperature capability of the key components, especially the first stages of disk where the 

the stress and temperature are the highest. Alloy development for turbine disk with high 

properties up to 700°C is consequently crucial in order to improve the thermal efficiency in gas 

turbine engines. 718 alloy which is extensively used for turbine disk is not capable of 

withstanding temperatures higher than 650°C due to the coarsening of gamma double prime [1-

3]. The U720Li, which is strengthened by γ’ phase, has a greater temperature capability and can 

be processed by the conventional cast & wrought (C&W) route [4-5]. This ability to be 

processed by the conventional route confers to this alloy a moderate cost compared to 

superalloys produced by powders metallurgy as René88DT, N18, RR1000. However, U720Li is 

difficult to fabricate by the C&W route due to its high γ’ prime content (45%) and can be 

considered as the limit between C&W route and powder metallurgy route. Because of this and 

because of its intrinsic raw material content, U720Li is significantly more expensive than alloy 
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718. TMW alloys were recently developed and present better properties than those of U720Li [6-

8]. However, the high cobalt content (table 1) strongly affects the alloys cost which are 

significantly more expensive than other C&W superalloys. 718Plus presents a moderate cost 

compared to current C&W superalloys [9-10] due to reasonable cobalt content and presence of 

iron (table 1), but its mechanical properties are significantly lower than those of U720Li and 

TMW4. Thus, it can be considered that 718Plus and TMW4 don’t improve the compromise 

between cost and mechanical properties currently offered by U720Li. 

 

In this context, Aubert & Duval has focused its research on developing a new cast & wrought 

disk superalloy that would have the following requirements: 

- mechanical properties close to U720Li and significantly higher than 718Plus   

- cost equal to 718Plus and lower than U720Li and significantly lower than TMW alloys 

- workability better than U720Li and TMW alloys 

- a high microstructural stability in the 700-750°C temperature range 

- a density lower than that of 718Plus (< 8.3 g.cm-3) 

This paper describes the properties and features of two experimental C&W superalloys 

developed in this research project: Ni30 & Ni33 alloys. 

 

Alloys features 

 

The new superalloys Ni30 & Ni33 developed by Aubert & Duval have an original chemistry 

with a similar chemical system to that of 718Plus : Ni-Fe-Co-Cr-Mo-W-Al-Ti-Nb with 

controlled additions of B, C and Zr. Phase diagram modeling was extensively used to design 

these new superalloys [11]. The ratio Fe/Co was adjusted to obtain the best compromise between 

cost and creep properties. Cobalt, which is an expensive element, must be as low as possible to 

decrease the alloy cost. However, results in 718Plus and Astroloy [10, 12] show that cobalt 

strongly affects creep properties and can not be suppressed to insure high creep properties. 

Where as iron strongly decreases alloy cost, this element favors the precipitation of σ phase. The 

iron content was consequently adjusted to obtain Md parameter value at 700°C (γ chemistry 

estimated with Thermo Calc software) lower than 0.900. This stability requirement doesn’t 

enable iron content as high as that of 718 alloy. As shown in figure 1, the intrinsic raw material 

cost of Ni30 and Ni33 alloys (rationalized to 718’s) is lower than those of other current C&W 

superalloys over a period of 3 years. This figure confirms that TMW4 is an expensive alloy (due 

to its high Co content) compared to 718 and other C&W superalloys. The sensitivity of 718Plus 

cost to Nb price variations explains that 718Plus cost variations are not similar to other C&W 

superalloys.  

Chemistries of Ni30 and Ni33 alloys contain more elements and are well adapted to scrap 

recycling: it is possible for example to recycle a part of 718 and other superalloys to fabricate 

these new superalloys contrary to U720Li, TMW4 and other C&W superalloys. This property 

consolidates their moderate cost. 

 

 Ni Fe Cr Co Mo W Al Ti Nb B* Zr* C* P* 

U500 Bal - 18 18.5 4 - 3 3 - 60 450 400 - 

Waspaloy Bal - 19 13.5 4.2 - 1.4 3 - 60 - 700 60 

U720Li Bal - 16 14.5 3 1.25 2.5 5 - 200 300 250 - 

TMW4 Bal - 15 26.2 2.8 1.15 1.9 6 - 170 200 200 - 

718 Bal 18 18 - 3 - 0.5 1 5.4 40 - 250 100 

718Plus Bal 10 18 9 2.8 1 1.5 0.7 5.5 40 - 250 100 

Table 1 : Chemical composition (wt%) of various C&W superalloys for turbine discs. (* ppm) 
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The Al, Ti, and Nb content were adjusted with Thermo-Calc software to obtain a higher γ’ 

fraction at 700°C than that of 718Plus (figure 2). The ratio (Ti+Nb)/Al was carefully controlled 

to avoid the precipitation of deleterious Ni3Ti-η phase [13, 11]. Mo and W were adjusted to 

insure a higher solid solution strengthening than that of 718Plus. Mo + W content in γ matrix at 

700°C was calculated with Thermo-Calc software to evaluate the solid solution strengthening 

provided by these elements: Mo + W content in γ matrix was estimated to be respectively equal 

to 2.6at% and 4at% in 718Plus and Ni30 & Ni33 superalloys.  
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Figure 1 : C&W superalloys cost (cost of alloying elements rationalized to 718’s) 

 

Compared to Ni30 alloy, Ni33 alloy has higher levels of Al, Ti and Nb with a similar (Ti+Nb)/Al 

ratio. This explains that Ni33 has a higher γ’ fraction (42%) and a higher γ’ solvus (1130°C) than 

Ni30 according to Thermo-Calc calculations (figure 2). 
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Figure 2 : Molar fraction of γ’ with T (°C) calculated by Thermo-Calc software with an internal 
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database developed by N. Dupin 

Alloys processing and microstructure 

 

A first study was carried out to compare the mechanical properties of new alloys with those of 

718Plus. Small Ingots of 718Plus, Ni30 and Ni33 were produced through primary vacuum 

induction (VIM) and hot extruded at 1120°C to 25mm bars (figure 3). 718Plus samples were 

heat treated with the standard heat treatment 955°C/1h/Air + 790°C/8h/Air + 700°C/8h/Air. Ni30 

and Ni33 were subsolvus solution heat treated (1050°C and 1080°C respectively) and aged at 

760°C/8h/Air + 650°C/24h/Air.  

Ingots in Ni30 and Ni33 were then produced by primary vacuum induction (VIM) and vacuum 

arc re-melting (VAR). Each of the VAR ingots was 200mm diameter and weighted about 170kg. 

No defect such as cracks, segregations and pores was observed. The ingots were successfully 

processed to 80mm diameter billets. Pancakes were successfully upset below the γ’ solvus in the 

temperature range 1050-1100°C. Samples were taken in the pancakes and heat-treated with the 

following sequence: subsolvus solution heat treatment (1080-1100°C) and air cooling on blanks 

with a section of 16x16 mm², which can approximate the cooling rate of oil quenched disks. 

Pancakes of U720Li and 718Plus, which can be considered as references in C&W alloys, were 

forged to obtain fine grain size. Samples were respectively subsolvus solution heat treated at 

1100°C and 955°C, then cooled with the same cooling rate (air cooling on blanks) and aged with 

their respective standard aging treatments. Results were also compared with typical data obtained 

on 718 and Waspaloy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Alloys processing a) Extruded billets from small ingots b) forged billets (80mm 

diameter) from 170kg ingots c) forged pancakes from 80mm billets   

 

Microstructure examinations on extruded billets from small ingots (figure 4) reveal a 

homogeneous microstructure with a grain size close to ASTM 5. As expected, intergranular δ 

phase was observed in 718Plus after full heat treatment. Primary γ’ precipitates localized at grain 

boundaries were not observed in Ni30 and Ni33 alloys due to the temperature of extrusion which 

was above the γ’ solvus. Therefore, a bi-modal γ’ distribution was observed inside the grains in 

Ni30 and Ni33 alloys: the larger (200-300 nm) have coarsened during subsolvus solution heat 

treatment and the finer (20-30 nm) have precipitated during quenching. 

Microstructure of forged pancakes (figure 5) are proper to γ/γ’ superalloys which are forged 

below γ’ solvus. Grain size is respectively close to ASTM 8 and 10 for Ni30 and Ni33 alloys. 

Grain size in U720Li and 718 pancakes are close to ASTM 10: Ni33 can be therefore rigorously 

2 cm 

a b c 

4 cm 20 cm 

compared to these alloys due to their similar grain size and cooling rate after solution heat 

treatment.  
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Figure 4 : Microstructure on extruded bars from small ingots after HT a) 718Plus b) Ni30 

 

 

 

 

 

 

 

 

 

 

 

 

 

Microstructure  

 

 

 

 

 

 

 

 

 

 

Figure 5: microstructure on forged pancakes from 170kg ingots after HT a) Ni30 b) Ni33 
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Mechanical and metallurgical properties 

 

γ’ precipitation and γ’ solvus 

 

Dilatometry tests were performed with a NETZSCH instrument on samples taken from billet 

extruded from small ingots. Tests were performed up to 1150°C with a constant rate (during 

heating and cooling) equal to 5°C/min (figure 6). 
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Figure 6 : Dilatometry tests performed on a) 718Plus and b) Ni30 alloy 

 

These tests usually may lead to an over-estimation of  γ’ solvus due to the dynamic dissolution of 

the γ’ phase. γ’ solvus at the equilibrium, which can be more rigorously evaluated with heat 

treatment, is between the γ’ solvus estimated by Thermo-Calc software and dilatometry test : γ’ 

solvus is close to 950°C in 718Plus and close to 1100°C in Ni30. 

With a cooling rate equal to 5°C/min from an initial temperature of 1150°C, γ’ precipitation 

occurs during cooling at a temperature close to γ’ solvus – 55°C ± 10°C in both alloys. 

 

Hot workability 

 

Hot workability was evaluated with tensile tests carried out with a strain rate equal to 10
-1

 s
-1

 up 

to 1180°C with samples taken in homogenized ingots (figure 7). No heat treatment (except 

homogenization) was performed before the tests to improve workability. 
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Figure 7 : Hot tensile workability with a rapid strain rate of various C&W alloys   
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The new alloys show clearly a better workability after homogenization than U720Li. The 

reduction of area is high enough in the 1100–1170 °C temperature range to enable a forging 

above γ’ solvus. Results obtained on the forged billet show that finer grain size improves 

significantly the workability: these alloys can be easily forged below γ’ solvus to obtain 

microstructures with fine grain size. This workability behavior clearly differs from that of 

U720Li alloy which can not be forged (without any cracks) above γ’ solvus. The TMW alloys 

workability seems to be very similar to U720Li’s: TMW alloys have a poor ductility above the γ’ 

solvus and have to be processed below the γ’ solvus [8]. 

 

Microstructural stability 

 

Matrix chemistry of new alloys was carefully controlled to avoid the precipitation of TCP 

phases. Thermo-calc software was used to estimate the fraction of TCP phases (sigma and mu 

phases) at various temperatures. New Phacomp was also used to evaluate if new alloys were 

prone to the precipitation of sigma-phase [14]. Md parameter (1) was calculated for various 

alloys with the matrix chemistry at 700°C determined by Thermo-Calc. TCP phases were 

suspended for this calculation : γ matrix chemistry was evaluated only in presence of γ, γ’ and 

MC carbides. 

Results show that microstructural stability of new superalloys is theoretically as good as those of 

U720Li [15] and TMW4 [8] and probably better than that of 718Plus [16] according to this 

theoretical approach (figure 8). U500 is known to be unstable [17] and has higher Md 700°C 

value and higher TCP phases amount than other C&W superalloys. 
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Figure 8 : Evaluation of microstructural stability in alloys design  

 

The microstructural stability of the new alloys was assessed with long term aging in the 750-

800°C temperature range. Hardness and SEM examinations were performed at different times on 

various C&W alloys. SEM examinations are performed to identify the presence of deleterious 

phases after long-term aging: it is known that TCP phases like σ-phase or mu-phase strongly 

affect the ductility and the notch sensivity. Hardness are performed to evaluate the γ’ phase 

stability which can affect the alloy strengthening (creep life, tensile properties…etc).  
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Figure 9 : Hardening response of various C&W alloys for long-term aging at 750°C and 800°C 

after standard heat treatment (solution HT + aging) 

 

Hardness of Ni30 and Ni33 alloys is quite stable at 750°C and slightly decreases at 800°C. 

Hardening evolution of these alloys appears to be similar to those of U720Li and Waspaloy. No 

TCP phases were observed in Ni30 and Ni33 after 1000h at 750°C. As shown on figures 5 and 

10, γ’ precipitates slightly coarsen after this overaging in both alloys. 718Plus hardness slightly 

decreases at 750°C and drops at 800°C contrary to other C&W superalloys. As shown on figure 

11, γ’ precipitates coarsen more quickly in this alloy at temperatures higher than 700°C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 : SEM examinations after 1000h at 750°C (a) Ni30 (b) Ni33 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 : SEM examinations on 718Plus (a) after standard HT (b) after 1000h at 750°C 

a b 
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Tensile and creep properties : results obtained on small ingots 

 

Tensile tests at 700°C were performed on Ni30, Ni33 and 718Plus. These results show that Ni30 

and Ni33 tensile strength are clearly much superior to those of 718Plus (figure 12).  
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Figure 12 : Mechanical properties of 718Plus and Ni30-Ni33 alloys obtained on small ingots 

 

Tensile creep tests were performed in air at 700°C/600MPa on extruded billets from small 

ingots. Both Ni30 and Ni33 alloys exhibit a creep strength significantly higher than that of 

718Plus, with a 5 to 7 times creep rupture life improvement. These better properties can be 

explained by the higher γ’ fraction and solid solution strengthening of Ni30 and Ni33 alloys. 

 

Tensile properties : results obtained on 170kg ingots 

 

Tensile tests and tensile creep tests were performed at various temperatures on forged pancakes 

in Ni30 and Ni33 alloys. Results were compared with tests performed in same conditions (same 

cooling rate) on a forged pancake in U720Li with a grain size close to ASTM 10. These tests 

reveal that tensile properties of new Ni30 and Ni33 superalloys are comparable to those of 

U720Li and are therefore clearly much superior to those of 718 and Waspaloy (figure 13 and 

figure 14). Elongation was higher than 10% in all tested conditions. 
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Figure 13 : Ultimate tensile strength as a function of temperature 
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Figure 14 : Yield strength as a function of temperature 

 

Creep properties : results obtained on 170kg ingots 

 

Creep properties of Ni30 and Ni33 alloys seem to be slightly superior to those of U720Li and 

consequently better than those of other C&W superalloys (figure 15). In the high temperature 

and low stress test region, Ni30 shows higher properties than Ni33 probably due to its larger 

grain size.   
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Figure 15 : Comparison of creep properties of C&W superalloys 
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Fatigue tests : results obtained on 170kg ingots 

 

Stress controlled Fatigue tests were performed in air at 650°C with a sinusoidal wave form 

signal, a frequency equal to 10Hz, a maximal stress equal to 1050MPa and a stress ratio close to 

0. Results show that Ni33 and Ni30 alloy lead to higher fatigue lives than U720Li for a similar 

grain size close to ASTM 10 (figure 16). 
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Figure 16 : Fatigue properties at 650°C of Ni30 and Ni33 alloy compared to U720Li  

 

Density 

 

Density was evaluated with Hull method [18] to design Ni30 and Ni33. As expected, density 

measurements on forged pancakes show that density of Ni30 and Ni33 is lower than that of 

718Plus and higher than that of U720Li (figure 17). 
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Figure 17 : Density of Ni30 and Ni33 compared to other C&W superalloys 

↑ : interrupted test (no failure after 3.10
6
 cycles) 
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Conclusions 

 

Aubert & Duval has developed new C&W superalloys which present a lower cost compared to 

other γ/γ’ C&W superalloys (U720Li, U500, TMW4) and a moderate cost increase compared to 

718 alloy. Workability tests show that the manufacturing of these alloys should be easier than 

that of U720Li and that supersolvus forging is possible on these new grades contrary to this last 

grade. High γ’ fraction (35-40%) associated with a high solid solution strengthening of the 

matrix explain the best mechanical properties obtained with these alloys. Tensile, creep, fatigue 

tests show that the mechanical properties are at least similar to those of U720Li and significantly 

higher than those of 718Plus. Long term aging performed at 750°C and 800°C confirm that new 

alloys have a good microstructural stability comparable to U720Li in this temperature range. 

Based on these results, it should be possible to extend performance capabilities, in terms of cost 

and mechanical properties, of most current C&W superalloys for turbine disks. Full scale 

productions will supply useful experience for processing these new alloys in manufacturing 

level. 
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