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Abstract 

 
The heat treatment response between 1170°C and 1320°C of an 
experimental single crystal Ni base superalloy is presented. The 
temperature range for solutionizing the alloy is determined by 
combinations of holding time and temperature. The effects of long 
isothermal holding within and beyond this solutioning temper-
ature range are studied. Heat treatment steps below the γ′-solvus 
temperature stabilize the eutectic phase, while steps above the 
solvus temperature improve the homogenization and reduce 
eutectic phase fraction. However, prolonged holding above the 
solvus temperature indicates up-hill diffusion at the eutectic 
region leading to incipient melting. A new solutioning heat treat-
ment approach with continuous heating between solvus and 
solidus is proposed 
 

Introduction 
 
As cast microstructures of Ni-base superalloys are highly hetero-
geneous due to coring during solidification [1,2]. To increase the 
high temperature capabilities, modern single crystal (SX) super-
alloys are alloyed with the refractory elements, W, Ta, and Re [3]. 
As a consequence, the microsegregation of these alloys is being 
more pronounced leading to higher eutectic fractions [4] and 
chemical instabilities [5]. Hence, heat treatment of modern SX 
alloys is becoming an increasingly challenging, time consuming 
and expensive process [6]. For the most part, the specific heat 
treatment processes of commercial as-cast superalloys are treated 
as empirical proprietary knowledge by superalloy designers and 
producers.  
 
To promote chemical homogeneity and eliminate coring, as well 
as achieve microstructural uniformity, as-cast alloys undergo 
solution heat treatment. To obtain the desired uniform γ/γ′ micro-
structure, the solution heat treatment is followed by γ′ 
precipitation aging. The solution treatment should dissolve the γ′ 
phase (both within the dendrites and interdendritic eutectic) into 
the γ matrix by either isothermal or stepwise heat treatment, 
between the solvus and solidus temperatures, which is commonly 
referred to as ‘solutioning window’ [7], followed by quenching. 
The aging treatment involves holding the alloy at sub-solvus 
temperatures to obtain fine and uniform γ′ precipitates within the 
γ matrix. To promote a bimodal distribution of γ′ phase, aging 
often involves high temperature primary aging, followed by lower 
temperature secondary aging.  
 
Despite the above understanding, it is challenging to design 
solution heat treatments for new superalloys because of the 
following reasons.  
 

1) Differential Scanning Calorimetry (DSC) is generally 
employed to obtain phase transformation temperatures. However, 
it is difficult to identify solvus and solidus temperatures of an as-
cast superalloy from the DSC profiles because of the interference 
of these transformations due to chemical heterogeneity [8]. 
2) It may be possible to resolve solidus and solvus peaks in a DSC 
thermograph following some degree of homogenization. How-
ever, these phase transformation temperatures not only vary with 
the heating or cooling rate but also with the degree of homo-
genization [9]. 
3) A highly segregated as-cast microstructure may have a solidus 
temperature lower than the solvus temperature. Under such a 
circumstance, a complete solutionizing heat treatment is 
considered impossible [10]. It is not uncommon that segregation 
of trace elements P, S, Si, B and Hf promote incipient melting in 
the interdendritic region at very low temperatures [11-13]. 
4) The complete dissolution of eutectic γ′ is difficult because of its 
coarse blocky morphology; a low surface area per volume makes 
it dissolve very slowly into γ matrix [14].  
 
The purpose of this research is to propose an efficient procedure 
for designing solutionizing-homogenizing heat treatments for 
heavily alloyed SX superalloys. The application of the proposed 
procedure is illustrated utilizing a newly designed experimental 
single crystal superalloy with significant refractory content. 
Stepwise heat treatments followed by microstructural analysis are 
employed to identify the solutioning window. The effects of 
holding time within and outside this solutioning window are 
discussed using EPMA (Electron Probe Microanalysis) and phase 
fraction analysis. Based on the results and analyses, a new 
solutionizing-homogenizing heat treatment approach is proposed. 
 

Experimental Material and Methods 
 

An experimental nickel base superalloy based on PWA 1480, with 
the nominal composition listed in Table I was used for the present 
research. The alloy was cast with a withdrawal rate of 5.65×10-5 
m/s (8.0 in/hr) into SX bars of 16 mm diameter and 200mm length 
in a Bridgman furnace using PWA 1484 SX starter seeds [4]. The 
SX bars with the longitudinal axes along <001> were sectioned in 
the transverse direction to obtain discs of approximately 6 mm 
thickness. 
 
Table I: Nominal composition (wt %) of experimental superalloy 
 
Ta W Re Co Mo Cr Ti Al Ni 
12 2 2 5 2 7.5 1 5 Balance 
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A box type radiant furnace with accurate temperature control of 
+1°C was used for heat treatments. An additional thermocouple 
with its bead in contact with the specimen was used to confirm the 
temperature measurement. Tables II lists stepwise heat treatment 
experiments in which each temperature step follows from the 
previous temperature. The temperature range of 1170 to 1320°C 
was chosen based on the DSC thermograph of the alloy obtained 
by Kearsey et al. [4]. To track the microstructural evolution 
during the stepwise heat treatments specimens were quenched in 
water after each step. All the experiments were performed in an 
air atmosphere. To avoid the interference of surface oxidation in 
the analysis, the specimen discs were sectioned transversely at the 
centre of 6mm thickness and the unoxidized surfaces were used 
for metallographic examination. Specimens were prepared for 
optical microscopy by grinding to 1 µm finish using standard 
metallographic procedures, followed by etching in a solution of 
0.3 g molybdic acid, 10 ml HNO3, 10 ml HCl and 15 ml H2O. 
 
Eutectic Phase Fraction Analysis 
 
To track the degree of solutionizing, eutectic phase fraction 
analysis was carried out using the image analysis software, Image 
Tool TM. A representative low magnification optical micrograph of 
the alloy obtained after each heat treatment step was converted 
into 16-bit grayscale format. After adjusting the brightness and 
contrast to delineate the dendrite and eutectic region, the grayscale 
format was converted into black and white threshold image using 
an Image ToolTM subroutine. Residual pixels corresponding to the 
eutectic region present in the black and white images were 
removed manually using a pixel editing tool. Finally, areas 
corresponding to dendrite and eutectic regions were obtained by 
counting the pixels from the black and white regions. 
 
 Electron Probe Microanalysis (EPMA) 
 
It has been established that a sharp compositional gradient exists 
in the as-cast alloy from the interdendritic eutectic to dendrite core 
region along [011] type direction [4]. Hence, studying the 
variation of this composition profile after each heat treatment step 
gives an estimate of degree of homogenization and hence the 
effectiveness of the heat treatment step. To study the variation of 
composition profiles, a series of spot chemical analysis was 
performed with intervals of about 25 µm along a line from the 
eutectic region to the dendrite core.  
 
 

 
 
A Camebax Electron Microprobe with Wavelength Dispersive X-
Ray (WDX) spectrometers was used for the analysis. Selected 
specimens ground to 1 µm finish by standard metallographic 
techniques were used for the analysis. The electron probe with 
accelerating voltage, 20 kV and beam current, 35 nA was used for 
the analysis over 5 µm x 5 µm raster with total counting time of 
60 s for each element. A well characterized suite of pure metals 
and minerals was used for calibration. The matrix correction 
software, Cameca PAP, was used for converting X-ray data into 
elemental weight percent. The limits of background noise levels 
were carefully determined by running wavelength scans on either 
side of the peak position of each analyzed element. As a result, 
highly accurate quantitative results were obtained including 
elements added in small amounts (Re, Ti, W).  
 
 

Results and Discussion 
 

Microstructural Analysis 
 
The as-cast microstructure of the alloy is shown in Figure 1. The 
dendrite core microstructure is fine and uniform, while inter-
dendritic region contains a cellular eutectic phase.  
 
Figure 2 shows the microstructural developments during the 
stepwise heat treatment identified as experiment 1 in Table 2. The 
first microstructural change occurs during the 1250°C step as the 
interdendritic region around the eutectic phase becomes denuded 
of fine γ′ precipitates, indicating that solutioning begins at the 
interdendritic region. Kearsey et al. [2,4] studied and confirmed 
this using scanning electron microscopy. However, during the 
higher temperature steps, this γ′ denuded region does not spread to 
dendrites. Instead, dendritic solutioning begins at the core region 
during the 1280°C step (Figure 2b) followed by complete 
solutioning of dendrites during the 1300°C step leaving behind 
undissolved blocky eutectic at the interdendritic region (Figure 
2c). During the 1310°C step, incipient melting occurs in the 
interdendritic region adjacent to the residual eutectic (Figure 2d). 
From these observations, it may be approximated that γ′-solvus 
temperature is 1290°C and the solidus is 1310°C and hence, the 
solutioning window is approximately 1290°C to 1310°C.  
 
 
 
 
 

Expt. No. 
 

Heat Treatment 
 

1 1170°C/15h  +  1250°C/2h  +  1280°C/2h    +  1300°C/2h  +  1310°C/2h 
2 1170°C/15h  +  1250°C/2h  +  1280°C/5h    +  1300°C/2h  +  1310°C/2h  +  1315°C/2h  + 1320°C/2h 
3 1170°C/2h    +  1250°C/2h  +  1280°C/15h  +  1300°C/2h  +  1310°C/2h  +  1320°C/2h 
4 1170°C/2h    +  1250°C/2h  +  1280°C/5h    +  1300°C/2h  +  1310°C/5h  +  1315°C/15h 
5 1170°C/2h    +  1250°C/2h  +  1280°C/5h    +  1300°C/5h  +  1310°C/15h 
6 1280°C/2h    +  1295°C/2h  +  1305°C/2h    +  1310°C/2h 
7 1280°C/2h    +  1295°C/2h  +  1305°C/10h 
8 1280°C/2h    +  1295°C/2h  +  1305°C/20h 

Table II:  Heat treatment experiments 
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Figure 1: As-cast microstructure of the alloy showing: a) dendritic structure, b) cellular eutectic phase at the interdendritic region 

b a 

Figure 2: Microstructure of the alloy after: a) 1170° C/15h+1250° C /2h showing denuded region around the eutectic, b) same as a) 
+1280° C/2h showing solutioning at dendrite cores, c) same as b)+1300° C /2h showing the residual eutectic phase between fully 
solutionized dendrites, d) same as c) +1310° C /2h showing incipient melting at the interdendritic region 

c d 

a b 
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The results of experiment 2 depict the effects of extended holding 
(5h) at a sub-solvus temperature of 1280°C. As observed from 
Figure 3, there is no sign of incipient melting of the alloy up to 
1315°C. However, at 1320°C, the alloy shows considerable 
incipient melting at both interdendritic region and within the 
dendrites.  
 
Figure 4 shows the occurrence of incipient melting after 1320°C 
step of experiment 3. A careful observation of microstructures of 
the alloy, before and after 1320°C step, confirms that the residual 
eutectic blocks at the interdendritic region undergo a eutectic 
reaction giving rise to cellular colonies. 
 
From experiments 1, 2 and 3, it is clear that prolonged sub-solvus 
holding (1280°C/2h, 5h, 15h) helps in raising solidus temperature 
slightly but not monotonically. Experiments 4 and 5 revealed 
incipient melting during prolonged holding at temperatures 
1315°C, 1310°C respectively. Figure 5 illustrates how extended 
holding promotes incipient melting. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 shows the results of experiments 6, 7 and 8 involving 
heat treatment steps within the solution heat treatment window 
(1290-1310°C). A systematic reduction in the eutectic fraction is 
evident from the micrographs indicating that γ′ solutioning is very 
effective within the window. However, a careful observation of 
figure 6d indicates onset of incipient melting and hence confirms 
the deleterious effect of prolonged holding.  
 
From the microstructural observations, it may be summarized that 
γ′ solutioning is effective within the solutioning window and that 
irrespective of the degree of homogenization or the thermal 
history of the alloy, extended holding in the vicinity of solidus 
temperature leads to incipient melting.  
 
 
 
 
 
 
 

b 

d c 

a 

Figure 3: Microstructures of the alloy after: a) 1170° C /15 h +1250° C /2 h +1280/5 h +1300° C /2 h, b) same as a) +1310° C /2h 
showing no sign of incipient melting, c) same as b) +1315° C /2h showing reduced eutectic phase fraction, d) same as c) +1320° C /2 h 
showing incipient melting.
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b 

Figure 4: Microstructures of the alloy after:  a) 1170° C /2 h +1250° C /2 h +1280° C /15 h +1300° C /2 h +1310° C /2h, b) same as a) 
+1320° C /2h showing a burst of incipient melting. 

a b 

c d 

Figure 5: Microstructural change of the alloy after the step heat treatment 1170° C /2h+1250° C /2h+1280° C /5h+1300° C /5h 
followed by holding at 1310° C for: a)2h, b)5h, c)10h, d)15h showing a systematic development of incipient melting. 
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Table III:  Eutectic phase fraction analysis 
 

Expt. 
No Heat Treatment Step Eutectic Phase 

Fraction (%) 
- As-cast 6.99 

1 1280°C/2h 3.29 

2 1280°C/5h 3.38 

3 1280°C/15h 4.23 

6 1280°C/2h, 1295°C/2h,  
1305°C/2h 

4.76, 3.78,  
2.33 

7 1305°C/10h 1.26 

8 1305°C/20h 0.91 
 
 
Eutectic Phase Fraction Analysis 
 
Eutectic phase fraction analyses performed on selected specimens 
are listed in Table III. Figure 7a and 7b illustrate the effects of 
extended holding on the solutioning of eutectic at a sub-solvus  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
temperature, 1280°C and a super-solvus temperature, 1305°C. 
Figure 7c shows the effect of increase in the holding temperature. 
Figure 7a indicates the unusual trend of increase in the eutectic 
fraction with increase in the holding time. This implies that an 
extended holding at 1280°C stabilizes the eutectic phase rather 
than dissolving it. However, extended holding above the solvus 
temperature shows a systematic reduction in the eutectic fraction, 
Figure 7b. The stepwise heat treatment with increase in the 
holding temperature also shows a monotonic reduction in the 
eutectic phase, Figure 7c. This indicates that a sub-solvus heat 
treatment has no beneficial effect on the dissolution of eutectic 
phase while a super-solvus heat treatment is beneficial. Hence, a 
stepwise heat treatment between solvus and solidus is an effective 
solutioning approach. This window is generally narrow for 
superalloys with high refractory content. Hence, stepwise heat 
treatment within the window would require a large number of 
incremental temperature steps. Hence, a slow and continuous 
heating is more practical solutioning method. As experiment 8 is 
the most effective heat treatment with residual eutectic fraction of 
less than 1%. Total time required for achieving this solution is 
approximately 25h over a temperature range of 25°C (1280-
1305°C). Hence approximately 1°C/h should be an optimum 
heating rate of for the continuous heating. 

a b 

c d 

Figure 6: Microstructural change of the alloy after: a) 1280° C/2h+1295° C /2h, b) same as a) +1305° C /2h, c) same as a) +1305° C /10h, 
d) same as a) +1305° C /15h showing a systematic reduction of eutectic phase. 
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Figure 7: A comparison of variation of eutectic fraction with: 
a) holding time at 1280°C from experiments 1,2 and 3. 
b) holding time at 1305°C from experiments 6, 7 and 8 and 
c) holding temperature from experiment 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: An illustration of EPMA composition profile 
measurement 
 
 
Electron Probe Microanalysis (EPMA) 
 
An illustration of EPMA measurements from eutectic region to 
the dendrite core is shown in Figure 8. The composition profiles 
of selected elements after heat treatment steps of experiment 6, 7 
and 8 are shown in figures 9 and 10. As evident from the figures, 
there is a sharp gradient between eutectic and core regions. Figure 
9 indicates that this gradient decreases with increase in the heat 
treatment temperature. Conversely, Figure 10 indicates that 
prolonged holding increases the eutectic to core gradient. 
 
The degree of homogenization can be expressed as the difference 
between the maximum point and the minimum point on the 
profile. Lower the difference, flatter the profile, more homo-
geneous the alloy. Table IV gives variation in degree of homogen-
ization with increase in holding temperature and time. There is a 
clear trend of increased homogenization with increased heat 
treatment temperature from as-cast to 1305°C. On the other hand, 
prolonged isothermal holding from 2h to 20h at 1305°C indicates 
a decreasing homogenization trend. If the profiles in figure 9 and 
10 are carefully observed, it is clear that the dendrite core quickly 
homogenizes and attains the nominal composition with an 
increase in temperature. Also, the core remains homogenized 
during extended isothermal holding. However, during prolonged 
isothermal holding, the eutectic region diverges from the nominal 
composition of the alloy. Such an unusual behavior at the eutectic 
region has been reported as up-hill diffusion [15]. The present 
work however confirms that up-hill diffusion leads to incipient 
melting during long isothermal holding (Figure 6d). The results of 
electron microprobe analysis suggest that stepwise heat treatment 
with increasing temperature is more beneficial than the isothermal 
heat treatment. 
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           Table IV: Variation of homogenization with heat treatment 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 9: Composition profile from eutectic to core region 
showing increased homogenization with increased holding 

temperature 
 
 
. 
 

 
 
 
 

Concentration (wt %) 

Expt. 6 Expt. 7 
 

Expt. 8 Element  Profile 
Statistics As-

cast  
1295°C 

/2h 
1305°C 

/2h 
1305°C 

/10h 
1305°C 
/20h 

  max 6.13 5.969 5.545 5.98 6.414 
  Al min 4.55 4.668 4.715 4.774 4.711 

 Diff 1.58 1.301 0.83 1.206 1.703 
  max 8.20 8.067 7.685 7.886 7.695 

  Cr min 2.77 3.975 4.651 4.653 2.716 
 Diff 5.43 4.092 3.034 3.233 4.979 
 max 66.05 65.343 64.492 65.401 67.35 

Ni min 61.87 61.626 61.963 63.155 62.948 
 Diff 4.17 3.717 2.529 2.246 4.402 
  max 5.17 5.261 5.074 5.201 5.216 

Co  min 3.65 4.044 4.27 4.252 3.724 
 Diff 1.52 1.217 0.804 0.949 1.492 
  max 1.65 1.228 1.229 1.225 1.347 

  Ti min 0.66 0.922 0.999 0.977 1.001 
 Diff 0.99 0.306 0.23 0.248 0.346 

  max 2.80 2.6 2.148 2.386 2.261 
  Re min 0.29 0.735 0.946 0.928 0.316 

 Diff 2.51 1.865 1.202 1.458 1.945 
  max 18.21 15.411 14.457 15.252 17.104 

  Ta min 9.41 10.885 11.913 11.89 11.967 
 Diff 8.81 4.526 2.544 3.362 5.137 

  max 2.08 1.967 1.894 1.881 1.947 
  Mo min 0.50 0.878 1.28 0.978 0.399 

 Diff 1.58 1.089 0.614 0.903 1.548 
  max 2.83 2.678 2.102 2.263 2.195 

  W min 0.63 1.313 1.221 1.233 0.82 
 Diff 2.20 1.365 0.881 1.03 1.375 
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Figure 10: Isothermal composition profiles from eutectic to core 
region showing a reduction in homogenization with extended 
holding at 1305°C. 
. 

 
 
 
 
 
 

Figure 11: A comparison of a) Traditional step-wise heat 
treatment and b) proposed heat treatment scheme. 

 
 
Summary and Conclusions 
 
The heat treatment response of an experimental SX superalloy 
studied by stepwise heat treatments between 1170 to 1320°C may 
be summarized as follows.  
 
Sub-solvus homogenization heat treatments help in elevating the 
incipient melting temperature marginally. Extended isothermal 
holding at a sub-solvus temperature has no beneficial effect on the 
dissolution of eutectic γ′. Extended holding at and above solidus 
temperature leads to incipient melting, irrespective of the thermal 
history of the alloy.  
 
Both extended holding and isothermal holding between solvus and 
solidus temperatures homogenizes the dendrite core quickly. 
However, eutectic region indicate up-hill diffusion during iso-
thermal holding leading to incipient melting. Hence, continuous 
heating at a slow heating rate between the solvus and solidus 
seems to be the favorable condition for the complete solutioning 
and homogenization of the alloy without incipient melting. Hence 
a new solutionizing-homogenizing heat treatment scheme, 
compared to the usual traditional stepwise heat treatment, shown 
in Figure 11 is proposed.  
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The procedure for designing an effective homogenizing-
solutioning heat treatment for a newly designed alloy with heavy 
refractory content would be: 
 
1. Decide the temperature range of interest from the DSC 
thermograph of the as-cast alloy. 
2. Determine the approximate solvus and solidus temperatures by 
stepwise heat treatments with increasing temperature and the 
constant holding time of 2h. 
3. Quickly raise the temperature of the specimen to the solvus 
temperature. 
4. Heat the specimen at a slow rate of about 1°C/h. 
5. Quench just before reaching the solidus temperature. 
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