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Abstract 

The neural network (NN) method is applied to mechanical 

properties estimation and alloy development of single crystal 

superalloys.  Databases have been constructed from previous 

publications and the Rolls-Royce materials database.  The 

Bayesian neural network technique was used for the modeling of 

mechanical properties of single crystal superalloys in terms of 

alloy compositions and test conditions.  Creep lives, yield 

strengths, and ultimate tensile strengths of various superalloys as a 

function of contents of alloying elements are estimated and 

analyzed.  New alloys were designed by calculations of various 

properties as well as creep rupture lives for millions of 

compositions, followed by selection of optimized alloys.  The 

developed alloys are made in single crystal form by directional 

solidification and tested.  They exhibit excellent phase stability 

and creep rupture lives which are better than or equivalent to 

those of CMSX-4. 

Introduction

The prediction of properties by statistical calculations has been 

utilised in alloy design of superalloys for several decades [1-3]. 

Ordinary Ni base superalloys contain more than 10 elements and 

it is hard to predict properties such as creep rupture life without 

relying on previous experimental data. Thus the most crucial step 

in computational alloy design is the accurate prediction of 

properties for unseen compositions based on the information 

extracted from experimental data.   

Alloy composition is not the only variable affecting the properties 

of an alloy; microstructural features such as grain size, 

morphology and volume fraction of precipitates have a significant 

influence on various properties of materials.  When interest is 

confined to single crystal superalloys, however, it is possible to 

neglect all the grain boundary related microstructural variables.  

Moreover most of the single crystal superalloys undergo heat 

treatment which gives a more or less uniform microstructure -- 

three dimensionally aligned cubic ' in a  matrix [4].  If it is 

assumed that there is an optimum heat treatment condition for 

each single crystal alloy composition, most of the  microstructural 

features related to  ' (volume fraction, size, morphology etc.) can 

be regarded as a function of alloy composition.  Thus it is possible 

to proceed with compositional modelling for single crystal 

superalloys with reasonable confidence, which is not the case for 

the polycrystalline superalloy. 

Expanding the capability of the original PHACOMP, Harada 

introduced computational methods to predict phase equilibria and 

properties of superalloy [1,2].  In their approach, most of the 

property prediction was based on statistical treatment of existing 

experimental data.  In the case of creep rupture life prediction, for 

instance, they organised experimental data at certain creep 

condition (1040 oC/137MPa) and performed multiple linear 

regression in terms of alloy composition.  They constructed an 

alloy design system to predict a number of properties as well as 

creep rupture life, which was utilised for successful superalloy 

developments [2,3].   

By multiple linear regression it is possible to figure out easily the 

relationship between input and output variables when there is no 

apparent functional relationship.  However, it is over-

simplification to assume linearity between compositions and 

properties for the modelling of real data.  If the content of certain 

elements is increased the creep rupture life might increase; but 

further increase of the elements might decrease the rupture life 

again.  Moreover, there could be interaction between the actions 

of each element; variation of the contents of an element could 

change the functional relationship between other elements and the 

output.

In spite of its merits of convenience, multiple linear regression has 

limitations in that we cannot model non-linearity and that we 

cannot explain coupling between inputs.  We could introduce a 

non-linear function to resolve these problems, but it is difficult to 

select a particular non-linear function a priori by only observing 

the experimental data, especially when there are dozens of input 

variables as in the case of a superalloy.  Therefore we need more 

general and flexible regression methods.  Artificial Neural 

Networks (ANN), or simply Neural Networks (NN), have great 

potential in modelling of complex experimental data. 

NN have already been extensively applied in the materials science 

field for the purpose of experimental data modelling [5,6], and 

their usage is in ever increasing trend. There are many variants of 

the NN approach but an approach called Bayesian neural network, 

formulated by Mackay [7,8] and Neal [9,10], has great merits in 

terms of precision and confidence of prediction though it often 

involves complex algorithms and calculations.  Bayesian NN was 

applied to property modelling in steel and superalloys [11-16]; 

most of the works are based on Gaussian approximation 

framework proposed by Mackay [7,8].     

The purpose of the present work is to investigate the 

compositional modelling of creep rupture life of single crystal 

superalloys by Bayesian NN using the Markov chain Monte Carlo 

(MCMC) approach by Neal [9,10].  The basic philosophy of the 

modelling is similar to previous works, but better precision in 

941

Superalloys 2004
Edited by K.A. Green, T.M. Pollock, H. Harada,

TMS (The Minerals, Metals & Materials Society), 2004
T.E. Howson, R.C. Reed, J.J. Schirra, and S, Walston



prediction at the expense of more calculation resources is aimed.

New single crystal superalloys are designed on the base of this

modeling. According to the results, newly designed alloys

showed better or equivalent performance in creep tests compared

with those of CMSX-4.  This result is regarded as a positive sign

that artificial neural network modeling can be a useful tool for real

world alloy design work. 

Neural Network

Like a human brain NN has a computational structure such that

the prediction performance improves as it performs learning (or

training) by data [17,18].  In this work only feed-forward back 

propagation neural networks are considered.  The architecture of a 

feed-forward NN is composed of an input layer, a number of

hidden layers, and an output layer (Fig. 1).  Each layer contains a

number of nodes (or neurons) which are fully connected with

nodes in neighbouring layers by weights. Each node can have

bias, and these weights and biases are the important parameters in

NN carrying numeric information the network has learned to date.

Figure 1.  Schematics of neural network architecture.

Let us assume an architecture which contains one input layer with

I nodes, one hidden layer with H nodes and one output layer with

one node (will be designated as I-H-1 architecture). The extension

to more general architecture is straightforward. The value of h'th

hidden node gh(x) is calculated as follows. 
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where xi is the value of i'th input, wih the weight connecting i'th

input node and h'th hidden node, and bh the bias applied to h'th

hidden node. The tanh function, called an activation function,

acts as a signal function which process non-linear input/output

where other types of activation functions are also possible.  Once 

all the hidden nodes are calculated, they act as input for the

calculations of nodes in the next layer.  Finally output node y can

be expressed as: 
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where vh is weight connecting hidden node h to output node, bo

the bias applied to the output node.

In conventional neural network the parameters are updated by so

called back-propagation methods. Let's suppose we have a

database consisting of n input vectors x� and corresponding

targets t�

}1|,{ ntD x (3)

The first stage in training is the expression of a cost function

which is the measure of network error.  One of the common cost

function is the sum of squared error E(w) expressed by
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where t is output of real data and y is network output calculated by

Eq. (2). E is a function of weight w because y is function of w.

The NN training process, thus, turns into finding the value of w

which minimizes E(w) ; that is, the optimisation problem.  In

statistical terms, it is equivalent to finding the maximum

likelihood when a Gaussian distribution for weights is assumed. 

The gradient descent method is a numerically pertinent algorithm

for this kind of high dimensional optimisation problem.  The 

update of weight is therefore expressed as follows:

w

w
w

)(E
(5)

where w is a vector that represents all the network parameters

(bias inclusive) and � is a positive constant called learning rate.

Because instability in calculation is often caused by high , we

need to set an appropriate  value to get a stable solution.  In a

conventional NN, the overall training proceeds repeating feed-

forward calculation and back-propagation update with all the 

available experimental data.

Generally the NN prediction becomes accurate as the number of

layers and/or the number of nodes increases.  If the architecture is

too complex, however, the network models all the noise in

experiment data and it may give poor generalisation. This

phenomenon called over-fitting [17,18] should be avoided since

what we want is not the detailed noise but the true generalisation

underlying experimental data.

Another problem of a conventional Neural Network is that the

model predicts just one single value for the output.  Because every

prediction involves uncertainty to some extent, we should be able

to provide an uncertainty or error bar with each prediction. A

potential solution to these problems which can be applied in NN

data modelling is Bayesian Inference.  Mackay [7,8] and Neal

[9,10] laid the foundation of the Bayesian neural network by

combining the concept of Bayesian inference and neural networks.

In neural network training the quantity we are to obtain is the

conditional probability p(w|D) , that is, probability distribution of

weight w given data D. This is represented by Bayes' rule,
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The conditional distribution of the data p(D|w) called likelihood is

obtained from the NN calculation. p(w) is the prior distribution of 

weight which can be regarded as the initial estimation on the final

distribution. The term p(w|D) is called the posterior distribution

and is the final goal of the calculations.. p(D) plays role of a

normalising factor, ensuring the posterior distribution, Eq.(6), to

be unity.  Although one confronts an additional numerical burden

with introduction of Bayesian inference, Eq.(6) gives the most 

natural reasoning on learning, that is, the probability parameter is

updated on receiving new data.

The main interest in data modelling is to predict the output of

unseen input variables. This prediction can be obtained by

integration in high dimensional weight space,

www dDpxtpDxtp )|(),|(),|(   (7) 

A high dimensional integral like Eq. (7) is very difficult to obtain

even with numerical integration.  Mackay [7,8] and Buntine and

Weigen [19] approached this problem assuming that the posterior

distribution is a multivariate Gaussian with mode wMP (most 

probable weight). The Gaussian approximation approach cannot

handle the presence of multiple modes in the posterior distribution

that are likely to be encountered in complex real data modelling. 

Nevertheless there have been several successful applications of

this approach, [8,11-16] taking advantage of the committee

(average of several separate models) concept.

Another more robust method is direct integration of Eq. (7) by

Monte Carlo methods [9,10].  The main disadvantage of this

method is known to be the long computation time to obtain the

desired distribution. To solve this problem Neal[9] used the

Metropolis algorithm and hybrid Monte Carlo approach, and

could attain a considerable speed-up in calculation. In this work 

the MCMC approach is used where the computation time was

found to be no longer a serious problem.

The Markov chain Monte Carlo method makes no assumption

concerning the form of distribution and performs a robust

integration based on sampling.  The main idea of Monte Carlo

integration is to approximate the integral like Eq. (7) by the mean

of the function f(w) sampled from target density p(w|D),
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where {wi} is a sample of weights drawn from the distribution

p(w|D).

To obtain the correct expectation of Eq. (8), n samples of wi

should be independent. But independent sampling from high

dimensional space is a nearly impossible task.  Instead a

dependent variable called a Markov chain is generated that has 

p(w|D) as its stationary distribution, the estimate will still

converge to the true value as n increases [10]. A well known

Metropolis algorithm is one of the methods to generate such

Markov chain. 

Neal used the Hybrid Monte Carlo method, which combines the

Metropolis algorithm with dynamic simulation, for efficient

sampling of the posterior distribution [9].  It makes use of the

gradient information provided by a back propagation network to

find candidate directions in which changes have a high probability

of being accepted. This approach allows the random walk

behaviour of Markov chain to be avoided, which speeds up the

sampling considerably [9,10].

In data modelling, the relative importance of different inputs can 

be determined using the Bayesian technique of Automatic

Relevance Determination(ARD) [10,20,21], based on the use of a

separate hyperparameters for each input.  If the hyperparameter

associated with an input specifies a small standard deviation for

weights, these weights are likely to be all small, and the input will

have little effect on the output; if the hyperparameter specifies a

large standard deviation, the effect of the input is likely to be

significant.

Neural network modeling for creep property

Data used in this work came from previous publications, patents

and the Rolls-Royce materials database. Although a lot of design

parameters are important in alloy design of superalloy interest was

confined to creep rupture life which is a very important requisite

for superalloy, especially in turbine blade applications.  A total

1291 creep rupture life datapoints for 164 single crystal

superalloys were collected; 633 data for 118 compositions from 

publications and patents---658 data for 46 compositions from 

Rolls-Royce database.  It is assumed that every datapoint 

represents best creep properties for a given composition and test 

conditions.  When a publication presents several datapoints 

according to different heat treatment condition or single crystal

orientation for the same composition and test condition, only the

datapoint with longest rupture life was chosen.

The input variables of database are contents of Co, Cr, Mo, W, Re,

Al, Ta, Ti, Nb, V, Hf, creep temperature T, and creep stress . The

output variable is creep rupture life in hours. The constructed

database forms a 14 by 1291 spreadsheet where the range of each

variable were outlined at Table I.  The range of Mo, W, Ta spans

from 0.0 to 13.5, 18.6, 16.0 wt% respectively which is wide

enough to consider most of the modern single crystal superalloys.

The range of Re is from 0.0 to 6.1 wt%, which means the model

can predict creep rupture life of 1st, 2nd and 3rd generation single

crystal superalloys.  About 5% of data out of 1291 datapoint were 

randomly selected and reserved separately without participating in

NN training. Therefore these data act as new experiments for 

testing the performance of our model

An improvement of NN performance can be expected if the input

and output have a relationship close to linear [22].  For this

purpose data transformation for temperature and rupture life were

tried as follows;

rr tt

TT

log'

)273/(1000'
(9)

To see the effect of raw data transformation pre-experiments were

tried varying the number of hidden nodes. Table II shows the

results of neural network training without and with raw data 

transformation.  In either case all fields are normalised to have
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mean of zero and a standard deviation of one. We can see the

benefits of transformation by comparing the two fields in Table II.

In this study the original data were transformed according to Eq.

(9) and each variable is normalised with the scale and shift

parameters shown at Table I. After neural network training

variables were converted into the original scale by corresponding

inverse transformations.

Table I. Variable ranges and data preparation

Variable

Name

Range Transformation Scale Shift

Co(wt%) 0.0-15.0 None 0.219 -1.516

Cr(wt%) 0.0-16.0 None 0.272 -1.965

Mo(wt%) 0.0-13.5 None 0.685 -0.900

W(wt%) 0.0-18.6 None 0.310 -1.540

Re(wt%) 0.0-6.1 None 0.414 -0.882

Al(wt%) 3.5-7.1 None 2.149 -11.941

Ta(wt%) 0.0-16.0 None 0.283 -1.379

Ti(wt%) 0.0-7.3 None 0.681 -1.111

Nb(wt%) 0.0-3.9 None 2.306 -0.449

V(wt%) 0.0-4.0 None 1.902 -0.443

Hf(wt%) 0.0-0.95 None 13.493 -0.493

Temp(oC) 700-1150 1000/(T+273) 12.215 -9.944

Stress(MPa) 30-1000 None 0.005 -1.445

Life(hours) 0.2-10783 Log 0.674 -3.672

Table II. Effects of raw data transformation (Average Squared 

Error for training set) 

Number of hidden

node

Normalization only Transformation &

normalization

5 0.1365 0.1129

7 0.1028 0.0612

9 0.0667 0.0506

11 0.0671 0.0458

13 0.0478 0.0361

15 0.0488 0.0322

17 0.0466 0.0274

A publicly available code written by Radford Neal [23] was used 

in neural network training and prediction in this study.  Pre 

module and post module such as data transformation and inverse

transformation were coded in C language. These programs were

run in Linux/X window environment installed in a personal 

computer. Average training time depends on the architecture of

network, but roughly it took about 1 hour in 100 iterations.

The priors for the network parameters (the weights and biases) are

defined hierarchically, using hyperparameters that control the

standard deviations for network parameters in various groups.

The parameters were organised in 4 groups: input--hidden weights 

wh, hidden biases bh, hidden--output weights wo, and output bias

bo.  The priors for the network weights are different for each

group of weights.

For wh, each parameter is picked from a Gaussian distribution

with mean zero and standard deviation .  At the next level the

corresponding precision , which is expressed by  = -2, out of

input unit i is given a Gamma distribution with a mean i and a

shape parameter 1.  At the final level the mean i is given a

Gamma distribution with a mean 0 and a shape parameter 0.

Values were assigned of 1 = 1, 0 = 0.5, and 0 = 25I2, where I is 

the number of inputs. This three layer prior incorporates the idea

of Automatic Relevance Determination (ARD)-the

hyperparameters, i, associated with individual inputs can adapt

according to the relevance of the input;  for an  unimportant input,

i can grow large, thus forcing i and the associated weights to

decrease

For bh and wo, parameters were given a hierarchical prior

consisting of two layers. At first each parameter was given a

zero-mean Gaussian prior with standard deviation .  Again the

distribution of  was specified in terms of a precision  = -2

which was given a Gamma distribution with mean  and shape

parameter .  Values were set to =100 and = 0.5 for bh and

= 100H and =0.5 for wo, respectively, where H is the number 

of hidden units. The output bias bo was simply given zero-mean

Gaussian priors with a standard deviation one.  In Neal's program,

these prior specifications are given with the command something

like "net-spec logfile 13 h 1 / - x0.2:0.5:1

0.1:0.5 - x0.05:0.5 - 1" where h is the number of

hidden nodes.

To see the effect of the number of hidden nodes, NN training was 

used for a 13-x-1 architectures varying x from 3 to 46.  Fig. 2

shows the Average Squared Error (ASE) guessing mean for the

training cases and test cases with respect to the number of hidden

nodes.  Each point was obtained by complete 200 iteration NN

training which took several hours. There is a clear tendency of

ASE to decrease as the number of hidden node increases for 

training cases. Although the ASE for test cases were higher than

those of training cases we can still observe the tendency of

decrease with respect to the number of hidden nodes.

Figure 2. Average squared error guessing mean with respect to

number of hidden node. 

Regarding model complexity Neal suggested that one should not

restrict the number of hidden nodes based on the size of the

training set, but should use as complex a model as one can handle 
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computationally, in order to extract the maximum information

from the data [10].  Neal demonstrated this point by valid

modelling in the extreme case of infinite networks [10].  In

practice, we have to use networks with only a finite number of

hidden units that our computational resources will allow us.  After 

evaluation with training and test cases a 13-31-1 architecture was

selected which showed a balance of performance and computation

time.  The real and predicted creep rupture life for this

architecture is shown in Fig. 3.  The predicted creep rupture lives

show good agreement with the real experimental data.  The error

bar is not shown in Fig. 3 on purpose for clarity.

The prediction for reserved data was tried to see the performance

of the model.  Fig. 4 shows the real and prediction value for test 

cases where error bar of the prediction is shown in this case.

Multiple correlation coefficient between the prediction and real

data was 0.932 implying that this model is reasonably accurate.

Note that the error bar length is different for each data point such

that they represent true confidence of prediction that is one of the

strong point of a Bayesian NN.  For instance some data points

showed quite long error bar which means the confidence of

prediction for these data is not great.  Since reserved data are

equivalent to new experiments it may be possible to predict the

creep life of a new single crystal superalloy with a similar

precision as long as the inputs are in the range of Table I.

Figure 3. Real and predicted creep rupture life for training cases.

As described before the standard deviation i for weight groups

radiated from each input variable represent the influence of each

input (ARD). ARD can be used for pruning; a lot of input

variables are considered at first, and irrelevant inputs are faded

out after training process. In the current case it is believed that all

the 13 input variables are important to some extent. Therefore

ARD was used to evaluate the relative importance of inputs.  The

standard deviation for each input weight group showed a little

scatter according to the number of hidden nodes that were

averaged for the architectures from 13-5-1 to 13-46-1.  The results

are shown in Fig. 5.

It can be seen that the effects of creep stress and temperature are

the most dominant of all input variables which is in good

accordance with reality. Among the alloying elements the effect

of Re was the highest showing the importance of this element in

single crystal superalloy.  The effect of Cr was also high ; which 

explains negative influence of this element on creep properties.

It is not surprising when it is considered that the level of Re have

been increased through 1st, 2nd and 3rd generation single crystal

superalloys in spite of its high price.  It is known that Re

contributes  strengthening and slows down the ' coarsening rate 

by retarding diffusion of other elements. Thus Re contributes to

the creep rupture life of single crystal superalloy significantly.

Figure 4. Real and predicted creep rupture life for reserved data. 

Figure 5. Effects of input variables obtained by Automatic

Relevance Determination : Creep modeling. 

The next dominant element was Cr. In general Cr negatively

affects creep rupture life of superalloy.  Nevertheless Cr is 

indispensable alloying element because it gives superalloy the

resistance to oxidation and hot corrosion. We can also see the

effects of solid solution hardening elements such as W and Ta and

the ' former such as Al and Ti are notable.
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To see the effects of each elements keeping all other input

variables constant the composition of CMSX-4, CMSX-10, Rene

N5 were selected.  The contents of each element were varied from

0 to 15 wt% and the creep stress and temperature were set to

210MPa and 950 oC, respectively.  (In this variation Ni act as a

buffer; so it is possible to make the composition of other elements 

to be constant.)

Figure 6. Effects of elements on creep rupture lives – based on

CMSX-4, CMSX-10, Rene N5, respectively.

In Fig. 6  we can clearly see high positive effect of Re and high

negative effect of Cr in CMSX-4 graph.  The effect of Al was

also high though it showed a maximum around 8.0 wt% of

contents.  In CMSX-10 graph we can see positive effect of W and 

maximum peak of Mo.  Note that this kind of non-linear

prediction is impossible in Multiple linear regression; MLR will

only predict ever increasing or ever decreasing tendency in line.

Also the effect of  TCP formation for very high Re alloys is not

considered in this model which is based on the range of Table I.

Neural network modeling for tensile properties

Similar procedures were applied to the modeling of yield strength

(YS) and ultimate tensile strength (UTS) of single crystal

superalloys. Total 229 YS datapoints and 231 UTS datapoints are

collected from previous publications and Rolls-Royce database.

Neural network trainings were performed for these databases

varying the number of hidden nodes from 3 to 50. The optimum

number of hidden nodes were determined to be 14 for YS 

modeling and 15 for UTS modeling.   The real and predicted YS 

for 12-14-1 architecture is shown in Fig. 7 and that of UTS is 

shown in Fig. 8.  Multiple correlation coefficients for YS and UTS 

were 0.988 and 0.977, respectively implying good agreements 

between real and experimental points.

Figure 7. Experimental and predected yield strength for 12-14-1

architecture

Fig. 9 and Fig. 10 shows ARD results for YS and UTS 

respectively.  In each case, the effect of tensile test temperature

was the highest as expected. Among the alloying elements the 

influence of Hf was the highest for YS and the influence of W was 

the highest for UTS.   We can find the effect of W is higher than

the effect of Mo in tensile properties.
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Figure 8.Experimental and predicted UTS for 12-15-1 architecture

Figure 9. Effects of input variables obtained by Automatic

Relevance Determination : YS modeling

Figure 10. Effects of input variables obtained by Automatic 

Relevance Determination : UTS modeling

Alloy Design 

With a neural network prediction module for the creep rupture life,

an alloy design system is constructed which can calculate volume

fraction of ', Barrow's (  phase formation) criteria, heat treatment

window, etc.  As a 1st stage, 112,896 compositions were 

calculated with combinations of rough steps.  Calculated results

were filtered with criteria: (i) volume fraction of ' is between

0.62 and 0.68, (ii) Barrow’s criteria is higher than 0.0 to ensure 

phase stability, (iii) heat treatment window is wider than 40 oC,

(iv)(W+Re)/Ta is lower than 1.25 to avoid freckle formation, (v) 

total refractory elements are more than 15 weight percent for

enough solid solution strengthening.  From the filtered results

compositions with high creep rupture life at 950 oC were selected,

and the 2nd stage of calculations were performed with 11,027,016

compositions having finer steps.

The final compositions selected are shown at Table III.  They are

the 2nd generation single crystal superalloys with 3 wt % of Re

like CMSX-4 which are designated as K2S series alloys in this

study. They contain high Co and low Cr that follow the trend of

the 3rd generation single crystal alloys (especially CMSX-10).  If 

K2S-1 is regarded as the base, K2S-2, K2S-3, and K2S-4 are

designed to see the effects of W, Hf, and Ta, respectively.  Mother

ingots are produced by Ross & Catherall ltd., UK.  According to 

composition analysis results real alloys showed very close

composition to those of target and amount of trace elements are

well controlled.

Table III. Compositions of newly designed K2S alloys

Co Cr Mo W Re Al Ta Ti Hf

K2S1 12.0 4.0 2.0 4.2 3.0 6.2 6.8 0.8 0.0

K2S2 12.0 4.0 2.0 4.6 3.0 6.2 6.8 0.8 0.0

K2S3 12.0 4.0 2.0 4.2 3.0 6.2 6.8 0.8 0.1

K2S4 12.0 4.0 2.0 4.2 3.0 6.2 7.4 0.8 0.0

Rod type single crystal specimens with 15mm diameter and 

180mm length are prepared by directional solidification in an

ALD DS/SX furnace with withdrawal rate of 3.8 mm/min.

Homogenization heat treatments were performed as follows.

o Heat to 1260 oC, hold 10 minutes 

o Heat to 1288 oC at 30 oC/hour

o Heat to 1320 oC at 6 oC/hour

o Hold for 6 hours followed by gas fan quench 

o Aged at 1140 oC for 2 hours followed by gas fan quench 

o Aged at 870 oC for 16 hours followed by air cooling 

Fig. 11 is the microstructure after homogenization showing no

coarse ' with negligible interdendritic porosities. Trace of

solidification dendrites can be seen which could not be fully

removed due to local melting.  Fig. 12 shows the / '

microstructure after 1st ageing.  Cuboidal ' is aligned 3

dimensionally separated by thin � channel which is typical and

ideal single crystal / ' microstructure.

Creep Tests

Fig. 13. shows creep curves for CMSX-4 and K2S alloys crept at

950 oC/355MPa and 982 oC/248MPa.  For 950 oC tests creep lives

of K2S alloys were about twice (K2S-1, K2S-3) or three times
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(K2S-4) longer than that of CMSX-4 at this test condition.  If we 

regard the composition of K2S-1 as the base, Hafnium addition

(K2S-3) resulted in negligible effect on creep life whereas extra W

addition (K2S-2) and extra Ta addition (K2S-4) resulted in

significant effects which is in good accordance with common

expectation.  That is, additional refractory elements contributed to

enhanced creep life via solid solution strengthening; grain

boundary strengthener Hf contributed little in single crystal creep

life.  For 982 oC notable difference in creep life was not observed

among the K2S alloys and CMSX-4 because our NN calculations

is performed only at the 950 oC/355MPa condition.

Figure 11. Solution heat treated microstructure of K2S-3 single 

crystal alloy.

Figure 12. / ' microstructure after solution and ageing treatment

Fracture surfaces are observed with SEM as shown in Fig. 7. 

Square areas containing center pores are aligned with identical

orientations which is typical single crystal crept fracture surface.

Rafting microstructures are observed at the cross sections of crept

K2S alloys as shown in Fig 8. The ' (shown as white phase at the

SEM photograph) elongated as plates perpendicular to the applied

stress axis (vertical direction in fig. 8) which is the favourable

single crystal microstructure for creep properties.  No 

topologically close packed (TCP) phases are observed at the

specimens crept at 950 oC. Considering that single crystal

superalloys are very sensitive in TCP phase formation around this

temperature, K2S alloys seem to have good phase stability.

Figure 13. Creep curve for CMSX-4 and K2S alloys crept at the

condition of 950 oC/355MPa and 982 oC/248Mpa

Fig. 16. shows TEM microstructure of CMSX-4 crept at the

condition of 950 oC/355MPa. In this rafted microstructure well 

developed dislocation network can be observed in ' as well as in

c matrix.  On the contrary this kind of network is not observed in

K2S-4 crept at the same condition as can be seen in Fig. 17.  We 

can observe some part of '  is sheared by dislocations but network

structure is observed only in matrix in Fig. 17.  Difference in

creep life between two alloys at 950 oC/355MPa might be

explained by the difference of dislocation microstructure.

Conclusions

1. Mechanical properties of single crystal superalloys was 

modelled by Bayesian neural network with Markov chain Monte 

Carlo methods that showed good prediction performance.  A test 
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of the model was performed with the reserved data and the

multiple correlation coefficient between prediction and real creep

life was 0.932.

2. The number of inputs was relatively small which was possible 

because of simple microstructure of single crystal superalloy.

3. As well as alloy composition, the model contains test conditions

such as creep stress and temperature as input.  It can be more 

versatile model compared with a model which can predict creep

properties for only one condition.

4. The automatic relevance determination (ARD) technique

revealed the influence of alloying elements; the greatest influence

to creep life was by Re and Cr which is in accordance with reality.

5. Using neural network model new single crystal superalloys are

developed which exhibited excellent phase stability and creep

rupture lives better than or equivalent to those of CMSX-4

Figure 14. Fracture surface of K2S-1 alloy crept at the condition

of 950 oC/355Mpa

Figure 15. Cross section microstructure of K2S-1 alloy crept at

the condition of 950 oC/355MPa

Figure 16. TEM microstructure of rafted CMSX-4 crept at the

condition of 950 oC/355MPa

Figure 17. TEM microstructure of rafted K2S-4 crept at the

condition of 950 oC/355MPa
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